Intrinsic motivation, free exploration and curiosity in humans and animals: a bibliography of articles with experimental results

This wiki page gathers a list of publications presenting experimental results (behavioral or brain-based) related to the study of mechanisms of intrinsic motivation, free exploration and curiosity in humans and other animals. It does also include studies focused on the effects of intrinsic motivation/curiosity on other processes such as memory and learning.

A related web page references theories of curiosity and intrinsic motivation:

Reviews of experimental results

Gottlieb, J., Oudeyer, P. Y., Lopes, M., & Baranes, A. (2013) Information-seeking, curiosity, and attention: computational and neural mechanisms, Trends in cognitive sciences, 17(11), 585-593.

Gottlieb, J., Hayhoe, M., Hikosaka, O., & Rangel, A. (2014). Attention, Reward, and Information Seeking. The Journal of Neuroscience, 34(46), 15497-15504.

Schulz, L. (2012) The origins of inquiry: Inductive inference and exploration in early childhood. Trends in Cognitive Sciences, 16, 382-389.

Hughes, R., 2007. Neotic preferences in laboratory rodents: Issues, assessment and substrates. Neuroscience & Biobehavioral Reviews 31 (3), 441–464.

Power, T. G. (1999). Play and exploration in children and animals. Psychology Press.

Lowenstein, G. (1994) The psychology of curiosity: a review and reinterpretation. Psychol. Bull. 116, 75–98

Corey, D., 1978. The determinants of exploration and neophobia. Neuroscience & Biobehavioral Reviews 2 (4), 235–253.
Corey78.pdf (2.4 MB)

Human infants (behavioral experiments)

Aimee E. Stahl* and Lisa Feigenson (2015) Observing the unexpected enhances infants’ learning and exploration, Science, 348(6230).

Vredenburgh C1, Kushnir T. (2015) Young Children’s Help-Seeking as Active Information Gathering. Cogn Sci. 2015 Apr 27. doi: 10.1111/cogs.12245. pdf (246.2 KB)

Taffoni, F., Tamilia, E., Focaroli, V., Formica, D., Ricci, L., Di Pino, G., … & Keller, F. (2014). Development of goal-directed action selection guided by intrinsic motivations: an experiment with children. Experimental brain research, 232(7), 2167-2177.

Gerken L, Dawson C, Chatila R, Tenenbaum J. Surprise! Infants consider possible bases of generalization for a single input example. Developmental Science. 2014.

Schlesinger M, Amso D. Image free-viewing as intrinsically-motivated exploration: estimating the learnability of center-of-gaze image samples in infants and adults. Frontiers in Psychology 2013; 4: 802. doi: 10.3389/fpsyg.2013.00802. pmid:24198801

Kidd C, Piantadosi ST, Aslin RN (2012). The Goldilocks effect: Human infants allocate attention to visual sequences that are neither too simple nor too complex. PLoS ONE. 2012; 7: e36399. Available: http://www.plosone.org/article/related/i nfo%3Adoi%2F10.1371%2Fjournal.pone.00363 99. doi: 10.1371/journal.pone.0036399. pmid:22649492

Gerken L, Balcomb FK, Minton JL. Infants avoid ‘labouring in vain’ by attending more to learnable than unlearnable linguistic patterns. Developmental Science 2011; 14: 972–979. doi: 10.1111/j.1467-7687.2011.01046.x. pmid:21884313

Fisher-Thompson, D., and Peterson, J. A. (2004). Infant side biases and familiarity-novelty preferences during a serial paired-comparison task. Infancy 5, 309–340. doi: 10.1207/s15327078in0503_4

Roder, B. J., Bushnell, E. W., & Sasseville, A. M. (2000). Infants’ preferences for familiarity and novelty during the course of visual processing. Infancy, 1(4), 491-507.

Voss, H.-G. & Keller, H. (1986). Curiosity and exploration: A program of investigation. German Journal of Psychology, 10, 327-337.

Colombo J., Bundy R. S. (1983). Infant response to auditory familiarity and novelty. Infant Behav. Dev. 6, 305–311 10.1016/S0163-6383(83)80039-3

Hunter M. A., Ames E. W., Koopman R. (1983). Effects of stimulus complexity and familarisation time on infant preferences for novel and familiar stimuli. Dev. Psychol. 19, 338–352 10.1037/0012-1649.19.3.338

Fantz, R. L. (1974). Visual experience in infants: decreased attention to familiar patterns relative to novel ones. Science 146, 668–670. doi: 10.1126/science.146.3644.668

Children (behavioral experiments)

van Schijndel, T. J., Visser, I., van Bers, B. M., & Raijmakers, M. E. (2015). Preschoolers perform more informative experiments after observing theory-violating evidence. Journal of experimental child psychology, 131, 104-119.

Bonawitz, E. B., van Schijndel, T. J., Friel, D., & Schulz, L. (2012). Children balance theories and evidence in exploration, explanation, and learning. Cognitive psychology, 64(4), 215-234.

Cook, C., Goodman, N. D., & Schulz, L. E. (2011). Where science starts: Spontaneous experiments in preschoolers’ exploratory play. Cognition, 120(3), 341-349.

Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D., Spelke, E., & Schulz, L. (2011). The Double‐edged Sword of Pedagogy: Instruction limits spontaneous exploration and discovery. Cognition, 120(3), 322–330.

Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction. Cognitive science, 5(4), 333-369.

Adult humans (behavioral experiments)

Gershman, S. J., & Niv, Y. (2015). Novelty and Inductive Generalization in Human Reinforcement Learning. Topics in cognitive science, 7(3), 391-415.

Jay H. Hardy III, , Eric Anthony Day, Michael G. Hughes, Xiaoqian Wang, Matthew J. Schuelke
Exploratory behavior in active learning: A between- and within-person examination
Organizational Behavior and Human Decision Processes, Volume 125, Issue 2, November 2014, Pages 98–112


explorationLearningHardyetal2014.pdf (739.9 KB)

Nelson, J. D., McKenzie, C. R. M., Cottrell, G. W., & Sejnowski, T. J. (2010). Experience Matters: Information Acquisition Optimizes Probability Gain. Psychological Science, 21(7), 960–969. http://doi.org/10.1177/0956797610372637

Meder, B., & Nelson, J. D. (2012). Information search with situation-specific reward functions. Judgment and Decision Making, 7, 119-148.

Markant, D.B., Settles, B., and Gureckis, T.M. (2015) Self-directed learning favors local, rather than global, uncertainty. Cognitive Science

Shenhav, A., Straccia, M. A., Cohen, J. D., & Botvinick, M. M. (2014). Anterior Cingulate Engagement in a Foraging Context Reflects Choice Difficulty, Not Foraging Value. Nature Neuroscience, 17(9), 1249–1254. http://doi.org/10.1038/nn.3771

Caligiore D, Mustile M, Cipriani D, Redgrave P, Triesch J, De Marsico M, et al. (2015) Intrinsic Motivations Drive Learning of Eye Movements: An Experiment with Human Adults. PLoS ONE 10(3): e0118705. doi:10.1371/journal. pone.0118705

Baranes, A. F., Oudeyer, P. Y., & Gottlieb, J. (2014). The effects of task difficulty, novelty and the size of the search space on intrinsically motivated exploration. Frontiers in neuroscience, 8.

Miard, B., Rouanet, P., Grizou, J., Lopes, M., Gottlieb, J., Baranes, A., & Oudeyer, P. Y. (2014, September). A new experimental setup to study the structure of curiosity-driven exploration in humans. In ICDL-EPIROB 2014.

Subbotsky, E. (2010). Curiosity and exploratory behaviour towards possible and impossible events in children and adults. British Journal of Psychology, 101(3), 481-501.

Otero-Millan J, Troncoso XG, Macknik SL, Serrano-Pedraza I, Martinez-Conde S. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. Journal of Vision 2008; 8: 14. doi: 10.1167/8.10.14. pmid:19146356

Schlesinger M, Amso D. Image free-viewing as intrinsically-motivated exploration: estimating the learnability of center-of-gaze image samples in infants and adults. Frontiers in Psychology 2013; 4: 802. doi: 10.3389/fpsyg.2013.00802. pmid:24198801

Litman, JA, Hutchins, TL, Russon, RK (2005) Epistemic curiosity, feeling-of-knowing, and exploratory behaviour. Cognition and Emotion 19: pp. 559-582

Adult humans and animals (neuroscience experiments)

Specific frontal neural dynamics contribute to decisions to check
Frederic M. Stoll, Vincent Fontanier & Emmanuel Procyk, Nature Communications, 2015
http://www.nature.com/ncomms/2016/160620/ncomms11990/full/ncomms11990.html

Wang JX, Voss JL. (2014) Brain networks for exploration decisions utilizing distinct modeled information types during contextual learning. Neuron. 82 (5), 1171-1182.

Jutras, M. J., Fries, P., & Buffalo, E. A. (2013). Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. http://doi.org/10.1073/pnas.1302351110/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1302351110

Foley NC, Jangraw DC, Peck C, Gottlieb J (2014) Novelty enhances visual salience independently of reward in the parietal lobe. J Neurosci 34:7947–7957.

Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic Circuit. Neuron, 84(2), 486-496.

Holroyd CB1, Yeung N. (2012) Motivation of extended behaviors by anterior cingulate cortex. Trends Cogn Sci. 2012 doi: 10.1016/j.tics.2011.12.008. Epub 2012 Jan 5. http://www.ncbi.nlm.nih.gov/pubmed/22226543

Cavanagh, J. F., Figueroa, C. M., Cohen, M. X., & Frank, M. J. (2012). Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation. Cerebral Cortex (New York, N.Y. : 1991), 22(11), 2575–86. http://doi.org/10.1093/cercor/bhr332

Leotti, L. A., & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 22, 1310–1318.

Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage, 49(4), 3198–209. http://doi.org/10.1016/j.neuroimage.2009.11.080

Murayama, K., Matsumoto, M., Izuma, K., & Matsumoto, K. (2010).
Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proceedings of the National Academy of Sciences, 107, 20911–20916.

Murayama, K., Matsumoto, M., Izuma, K., Sugiura, A., Ryan, R. M., Deci, E. L., & Matsumoto, K. (2013). How self-determined choice facilitates performance: A key role of the ventromedial prefrontal cortex. Cerebral Cortex.

Jepma M, Verdonschot RG, et al. Neural mechanisms underlying the induction and relief of perceptual curiosity. Front Behav Neurosci. 2012;6:5.

Peck CJ, Jangraw DC, Suzuki M, Efem R, Gottlieb J (2009) Reward modulates attention independently of action value in posterior parietal cortex, J Neurosci 29:11182–11191.

Kang MJ, Hsu M, et al. The wick in the candle of learning: epistemic curiosity activates reward circuitry and enhances memory. Psychol Sci. 2009;20(8):963–973.

Wittmann, B. C., Daw, N. D., Seymour, B., & Dolan, R. J. (2008). Striatal activity underlies novelty-based choice in humans. Neuron, 58(6), 967-973.

Redgrave P, Gurney K, et al. What is reinforced by phasic dopamine signals? Brain Res Rev. 2008;58(2):322–339.

Himmelbach M, Erb M, Karnath H-O. Exploring the visual world: the neural substrate of spatial orienting. Neuroimage 2006; 32: 1747–1759. pmid:16806986 doi: 10.1016/j.neuroimage.2006.04.221

Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412(6842), 43–48.

Other animals (behavioral)

Spontaneous Metacognition in Rhesus Monkeys
Alexandra G. Rosati1 and Laurie R. Santos
Psychological Science, 2016

Novelty Seeking and Reward: Implications for the Study of High-Risk Behaviors
Rick A. Bevins, 2010
Current direction in psychological science

Ambiguity Aversion in Rhesus Macaques
Benjamin Y. Hayden, Sarah R. Heilbronner, and Michael L. Platt
Frontiers in Decision Neuroscience (2010) Vol. 30, p 3339-3346.

Chang, S., & Yang, K. S. (1962) Manipulation and learning in monkeys, Acta Psychologica Taiwanica, (4), 11-20.

Harlow, H. F., Harlow, M. K. & Meyer, D. R. (1950). Learning motivated by a manipulation drive. Journal of Experimental Psychology, 40:228-234.

Berlyne, D. E. (1950). Novelty and curiosity as determinants of exploratory behavior. British Journal of Psychology, 41:68-80.

Other animals (neuroscience)

di Sorrentino, E. P., Sabbatini, G., Truppa, V., Bordonali, A., Taffoni, F., Formica, D., … & Visalberghi, E. (2014). Exploration and learning in capuchin monkeys (Sapajus spp.): the role of action–outcome contingencies. Animal cognition, 17(5), 1081-1088.

Applications in education, games and other domains

E. Law, M. Yin, J. Goh, K. Chen, M. Terry and K. Gajos. “Curiosity Killed the Cat, but Makes Crowdwork Better.” Forthcoming In CHI 2016.

Multi-Armed Bandits for Intelligent Tutoring Systems
Benjamin Clement, Didier Roy, Pierre-Yves Oudeyer, Manuel Lopes (2015)
Journal of Educational Data Mining (JEDM), Vol 7, No 2.

Malone, T. W. What makes things fun to learn? A study of intrinsically motivating computer games. Xerox Palo Alto Research Center Technical Report No. CIS-7 (SSL-80-11), Palo Alto, California, August, 1980.

Methodological tools for experiments

Piotrowski, J.T., Litman, J.A., & Valkenburg, P. (2014). Measuring epistemic curiosity in young children. Infant and Child Development, 23, 542-533.

Jirout, J. & Klahr, D. (2012) Children’s scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, Volume 32, Issue 2, June 2012, Pages 125-160

Litman, J. A., & Spielberger, C. D. (2003). Measuring epistemic curiosity and its diversive and specific components. Journal of Personality Assessment, 80(1), 75-86.

Spielberger, C. D., & Starr, L. M. (1994). Curiosity and exploratory behavior. In H. F. O’Neil, Jr., & M. Drillings (Eds.), Motivation: Theory and research (pp. 221–243). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Scale of Intrinsic vs. Extrinsic Orientation For Use in the Classroom, Ages 8 to 18
Harter, 1981

Langevin, R. (1971). Is curiosity a unitary construct? Canadian Journal of Psychology, (25) 360-374.