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Despite being central to active learning theory, surprisingly little research has directly examined the
antecedents and outcomes of exploratory behavior. This laboratory study addressed this gap using
repeated measures to examine the role and dynamics of exploration in complex task learning. Findings
showed task exploration was beneficial across a variety of learning outcomes. Dynamic effects were also
observed: (a) exploration was positively related to practice performance at both between- and within-
person levels, (b) exploration decreased across practice trials, and (c) decreases in exploration were mit-
igated by pre-training task-related knowledge. Although general mental ability (GMA) and pre-training
task-related knowledge both exhibited effects on exploration, effects were stronger for pre-training
task-related knowledge. Neither moderated the link between exploration and learning. Error framing
moderated the GMA–exploration relationship such that higher-GMA learners explored more under
approach versus avoid conditions. Results are discussed with respect to criticisms of discovery-based
learning and implications for active learning.

� 2014 Elsevier Inc. All rights reserved.
Introduction

Exploration has a rich history in the psychological literature as a
fundamental behavioral information-gathering process central to
human development and learning (Berlyne, 1954a, 1954b, 1955;
Piaget & Cook, 1952). In a training context, the centrality of
exploratory behavior—defined as an active interaction on the part
of the trainee with the training environment through attempts at
multiple solutions to the problem at hand (Dormann & Frese,
1994)—is an important tenet of the constructivist theory of
learning (Bruner, 1961). Constructivism posits that learning is an
active and inductive process whereby individuals explore to
assimilate rules, principles, and strategies into knowledge and skill.
This perspective has since come to serve as the foundation for a
modern, learner-centered training paradigm known as the active
learning approach (Bell & Kozlowski, 2008, 2010).
In general, empirical research has supported the notion that
learners should be actively involved in the learning process (Bell
& Kozlowski, 2008, 2010; Keith & Frese, 2008; Keith, Richter, &
Naumann, 2010). However, despite the prominence of exploration
in active learning theory (Bell & Kozlowski, 2010), its outcomes in
these contexts are often debated. Early research on active learning
found that exploratory behavior facilitated higher levels of learning
and performance (Dormann & Frese, 1994). However, later findings
suggested that learners in conditions that allow for task explora-
tion often show better analogical and adaptive transfer outcomes
but worse training performance relative to learners in procedural-
ized conditions that limit exploration (Bell & Kozlowski, 2008;
Hesketh, 1997). Many attribute this pattern of findings to the
implied relationship between exploration and the making of errors
(Keith & Frese, 2008) or to varying degrees of guidance and struc-
ture in exploration-based interventions (Debowski, Wood, &
Bandura, 2001; Smith, Ford, & Kozlowski, 1997). Critics of explora-
tion-based interventions go even further, arguing that the utility of
discovery and active learning approaches is limited for low ability
or inexperienced learners due to high information-processing
demands (Kirschner, Sweller, & Clark, 2006) or because inexperi-
enced learners miss important material in exploration-based
learning (Mayer, 2004). Often, these criticisms allude to the
exploratory nature of discovery environments as the cause of such
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limitations and call for restrictions on trainee exploration (Alfieri,
Brooks, Aldrich, & Tenenbaum, 2011).

In this paper, we argue that conflicting conclusions regarding
effects of exploration on performance in active learning can be
addressed by resolving a level of analysis problem concerning the
theoretical conceptualization and study of exploratory behavior in
learning contexts. Specifically, most studies examining the role of
exploration in active learning have not directly measured task
exploration during the learning process but rather infer its effects
through comparisons of exploration-based versus proceduralized
interventions. Although there are clear advantages to manipula-
tion-based (i.e., experimental) approaches, relying solely on such
a design provides a limited examination of learner self-regulatory
processes. Accordingly, many calls have been made for more stud-
ies that directly examine (e.g., via behavioral observation) mecha-
nisms that account for active learning effects (Bell & Kozlowski,
2010; Debowski et al., 2001; Gully, Payne, Koles, & Whiteman,
2002), and several cognitive and motivational self-regulatory pro-
cesses, such as metacognition, emotion control, self-efficacy, and
goal setting have since been studied directly (e.g., Bell &
Kozlowski, 2008; Keith & Frese, 2005; Kozlowski & Bell, 2006).
However, the measurement of exploratory behavior during train-
ing has been generally overlooked. This omission from the litera-
ture is problematic for several reasons. First, and most central, is
that by relying solely on manipulation-based operationalizations
of exploration, active learning research diverges from its construc-
tivist origins by studying exploration as a component of an inter-
vention rather than as a behavioral process of the learner. Such
an approach carries the untenable assumption that all trainees
engage equally in task exploration when participating in active
learning. Second, exploration-based interventions are inherently
multi-faceted with multiple design and informational components
influencing a variety of self-regulatory processes. This makes it dif-
ficult to isolate exploration as a mechanism facilitating or inhibit-
ing learning outcomes. Consequently, when research points to
potential problems with exploration-based interventions, it is dif-
ficult to identify the specific causes of the problems (Bell &
Kozlowski, 2010). Without direct measurement, one cannot be
sure if exploratory behavior per se is to blame for problems that
might arise in discovery learning (cf. Charney, Reder, & Kusbit,
1990), thus limiting the development of targeted solutions. Third,
by definition, self-regulation theory speaks to within-person,
dynamic phenomena (Vancouver, Weinhardt, & Vigo, 2014). As
such, repeated, direct measurements of exploration during the
learning process are necessary to examine how exploration
changes over time and to identify factors related to these changes.
Finally, despite being identified as an important self-regulatory
pathway that benefits learning (Kozlowski, Toney, et al., 2001),
trainee behavior during practice has been relatively understudied
in active learning research in favor of a stronger focus on more cog-
nitive- and emotion-based mechanisms. Although cognition and
emotion are certainly important, by overlooking trainee behavior,
researchers are neglecting key processes by which learners interact
with their environment.

Accordingly, our purpose was to examine the role and dynamics
of exploration in complex task learning by using repeated, direct
measurements of exploratory behavior across practice trials. Tak-
ing the perspective of curiosity theory, which views exploration
as a dynamic, information-gathering process concerning how indi-
viduals approach and engage the complexity and novelty of task
stimuli (Berlyne, 1960, 1966; Loewenstein, 1994), we tested and
compared two proposed pathways by which the capability-based
individual difference variables of general mental ability (GMA)
and pre-training task-related knowledge (i.e., a composite of prior
experience and baseline performance) are linked to learning out-
comes via exploration. First, we examined a common proposition
of critics of discovery learning that learner capabilities moderate
the relationship between exploration and learning outcomes such
that the positive relationships between exploration and learning
outcomes are stronger for higher-capability individuals
(Kirschner et al., 2006). Second, we examined the extent to which
GMA and task-related knowledge directly and positively influence
exploratory behavior, which in turn positively relates to learning
outcomes. Furthermore, we compared whether the effects of
exploration are related more to GMA versus task-related knowl-
edge by testing similar pathways for both. With respect to the sec-
ond pathway, we also examined how error framing instructions in
error management training (EMT)—a common active learning
intervention—directly influences exploration and moderates the
influence of GMA and task-related knowledge on exploration.
Finally, we expected that the underlying processes driving
exploratory behavior’s effects would fluctuate across practice
trials. As such, we contend that exploration is dynamic and should
be studied accordingly. Research has demonstrated that dynamic
constructs can show differential effects depending on the between-
and within-person levels of analysis (Vancouver, Thompson,
Tischner, & Putka, 2002; Yeo, Loft, Xiao, & Kiewitz, 2009; Yeo &
Neal, 2006). Therefore, we tested for dynamic trends during
practice and took a nuanced approach by examining if effects on
practice performance are similar or different at the between- and
within-person levels. Fig. 1 summarizes these propositions and
shows the model that served as our guiding framework.
The effects of exploratory behavior on learning

When examining learning outcomes, it is important to consider
both proximal (i.e., knowledge and skill) and distal (i.e., adapta-
tion) outcomes (Kraiger, Ford, & Salas, 1993). Accordingly, in this
study, we examined multiple learning outcomes including task
knowledge, practice performance, and analogical and adaptive
transfer performance. Task knowledge is composed of both basic
task knowledge, defined as the comprehension of basic task
features and critical tasks, and strategic task knowledge, defined
as the understanding necessary for situational assessment and
prioritization (Kozlowski, Toney, et al., 2001). Skill-based outcomes
included practice performance, defined as effectiveness during
training, and analogical transfer (i.e., near transfer), defined as the
capability to be effective in familiar performance situations after
training. Skill adaptability or adaptive transfer (i.e., far transfer) is
defined as the capability to use one’s existing knowledge and skill
in response to novel (e.g., more difficult, complex, and dynamic)
performance demands (Ivancic & Hesketh, 2000).

It is particularly important to examine both proximal and distal
outcomes when studying exploration given that manipulation-
based approaches sometimes show crossover effects such that
trainees in exploration conditions perform worse during practice
but better on post-training tests of skill retention and adaptability
(Bell & Kozlowski, 2008; Hesketh, 1997; McDaniel & Schlager,
1990). However, these findings are in reference to the comparison
of interventions that are inherently multifaceted without measure-
ments of exploratory behavior to link intervention effects to
learning outcomes. Consequently, these findings are limited in
the extent to which they can speak directly to how variability in
exploratory behavior is associated with variability in both proxi-
mal and distal performance. For instance, trainees in procedural-
ized conditions are often provided with step-by-step task
solutions during practice, whereas those in exploration-based con-
ditions are not (e.g., Bell & Kozlowski, 2008; Dormann & Frese,
1994; Frese et al., 1991). This additional instruction and guidance
directly affects performance scores during practice. Accordingly,
many of the negative practice performance effects attributed to



Fig. 1. Guiding theoretical model of the antecedents, outcomes, and interactions associated with exploration in active learning.
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exploration are relative to proceduralized conditions in which
practice performance may not solely reflect the volition of trainees.
Although this approach can be informative in the evaluation of
interventions as a whole, such comparisons do not allow one to
draw conclusions regarding the effectiveness of exploration as a
behavioral mechanism in active learning, as trainee decisions and
behavior are not the sole determinates of practice performance
scores. Accordingly, we turn to theories of curiosity and explor-
atory behavior for guidance in developing our predictions for the
direct effects of exploratory behavior on learning.

Curiosity theorists postulate that exploration begins with per-
ceptions of novelty (Berlyne, 1966; Harrison, 2012; Litman, 2005;
Loewenstein, 1994). Experiencing novelty exposes a gap between
information relevant to effectively dealing with the environment
and one’s current level of understanding (Loewenstein, 1994). This
gap motivates learners to improve their effectiveness in dealing
with the environment (White, 1959), ultimately leading them to
explore in an effort to resolve perceived deficiencies. Along these
lines, we believe that exploratory behavior will offer two primary
benefits in active learning contexts. First, as a benefit of resolving
environmental novelty, learners who explore more will cultivate
a deeper and more complete understanding of the relative effec-
tiveness of a variety of different approaches in response to dynamic
stimuli. Second, exploratory behavior should enable learners to be
more flexible and intentional in the approaches they attempt. By
building upon existing knowledge and skill, exploration allows
for increased responsiveness to novelty in the immediate, con-
text-specific demands of complex and dynamic task environments.
In other words, learner exploration is not random behavior. Rather,
it represents a systematic process whereby individuals identify,
seek out, and resolve novelty relevant to immediate task perfor-
mance (Loewenstein, 1994). In this regard, exploration can miti-
gate the premature adopting of an overly narrow task focus and
settling on suboptimal strategies (Gopher, Weil, & Siegel, 1989;
Stafford & Dewar, 2013; Yechiam, Erev, & Gopher, 2001). On the
other hand, when learning simple tasks in which novelty is limited
and optimal approaches are readily available, continuous explora-
tion is often unnecessary and may inhibit the automation of opti-
mal strategies. In these instances, practice may be better spent
repeating and overlearning the correct approach. However, tasks
typically used in adaptive training (e.g., active learning training)
are characterized by complex and dynamic decision-making char-
acteristics (Kozlowski, Toney, et al., 2001) that are well suited for
exploratory behavior given that they typically have no single, sim-
ple task solution or optimal strategy. Accordingly, we expected
that when learning a complex task, positive effects of task explora-
tion on learning would be found at the within-person level such
that fluctuations in exploration in an active learning context would
be positively associated with changes in episodic practice perfor-
mance. These benefits cumulate over the course of practice as indi-
viduals build their knowledge and skill, leading to positive effects
at the between-person level as well.
Hypothesis 1. Exploratory behavior will be positively related to (a)
practice performance at the between-person and within-person
levels and (b) post-training learning outcomes (i.e., task knowl-
edge, analogical transfer, and adaptive transfer).
The moderating role of general mental ability and pre-training
task-related knowledge

Cognitive resources are required to incorporate new informa-
tion into knowledge to be applied in future performance instances
(Kanfer & Ackerman, 1989). Trainees encounter a large amount of
nuanced information when exploring, which requires attentional
resources on the part of the trainee (Kahneman, 1973; Treisman
& Gelade, 1980). Although some researchers (e.g., Keith et al.,
2010) argue that active learning environments are suitable for both
low- and high-ability learners, critics of discovery-based
approaches argue that the cognitive load incurred by exploration
puts limits on its potential benefits to individuals who have the
requisite ability to handle such demands (Ivancic & Hesketh,
1995, 2000; Kirschner et al., 2006). Analogical and problem-solving
processes are likely to be important for converting and combining
information learned from exploration into a framework that facil-
itates future performance. Accordingly, one might predict interac-
tions such that (a) GMA and (b) pre-training task-related
knowledge equip trainees with the requisite cognitive capacity to
better process information from exploration.

Hypothesis 2. The positive relationships between exploration and
practice performance, and exploration and post-training outcomes
will be moderated by (a) GMA and (b) task-related knowledge such
that the relationships will be larger for trainees with higher-GMA
and pre-training task-related knowledge.
The dynamics of exploratory behavior

As we alluded to earlier, curiosity theory proposes that explor-
atory behavior is a dynamic process whereby learners continually
assess and reassess discrepancies between novelty in the environ-
ment and their current level of competence (Loewenstein, 1994).
Accordingly, trends in one’s motivation to resolve novelty
(White, 1959) and consequently exploratory behavior should
reflect changes in novelty perceived by learners relative to changes
in their levels of competence. As such, when performing a complex
task early in practice, perceived novelty will be relatively high. As a
result, learners will expend considerably more effort exploring
novel stimuli early in training in order to resolve the wider infor-
mation-knowledge gaps initially perceived. However, as training
progresses, learners begin to resolve novelty as they become
more knowledgeable and skilled. The longer trainees engage in
practice, the narrower their information-knowledge gap becomes.
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Therefore, we expected that exploratory behavior would be highest
early in practice but would gradually decline over the course of
practice.

Hypothesis 3. Exploratory behavior will decline across practice
trials.
Antecedents of exploratory behavior

Thus far, we have focused primarily on overall trends of explora-
tion during practice. However, it is important to note that levels of
novelty perceived at the onset of training are not the same in all
learners, even in similar performance contexts. Furthermore, Ber-
lyne argued that the mechanism of increased complexity also plays
an important role in curiosity theory because it allows for sustained
levels of exploratory behavior (Berlyne, 1960, 1966, 1970). In partic-
ular, Berlyne proposed that increased complexity results in elevated
levels of novelty (Berlyne, 1966), which slows the rate at which the
information-knowledge gap is closed in response to increasing lev-
els of competence. Indeed, early research has supported the notion
that individuals generally prefer sources of novelty slightly more
complex than their current levels of competence (Earl, Franken, &
May, 1967; May, 1963). Together, novelty and complexity operate
in an adaptive feedback process that allows explorers to continue
to learn and grow, even as they resolve initial sources of novelty.

However, not everyone will increase task complexity at the
same rate, resulting in variations in the trends of exploratory
behavior across practice and across learners. The implication of
this dynamic process is that factors that influence (a) overall levels
of perceived novelty and (b) one’s willingness to increase complex-
ity following changes in task knowledge or skill will also influence
overall levels and trends in exploratory behavior (Greif & Keller,
1990; Loewenstein, 1994). Along these lines, we expected that
capability-based individual differences would contribute to overall
levels of exploration and to the trajectory of exploratory behavior
across practice trials such that trainees who perceive greater levels
of novelty and those willing to increase the complexity of their
interactions with the task environment would be more likely to
explore more and to continue exploring in active learning contexts.
Although a wide range of antecedents to exploration are plausible
(e.g., goal orientations, metacognition, openness, self-efficacy, and
emotional regulation), we elected to focus on capability-based
individual difference antecedents for which the relationships with
novelty and complexity have been demonstrated in the extant lit-
erature; namely GMA and pre-training task-related knowledge.

General mental ability

Theorists have long considered GMA and exploration to be clo-
sely related. As such, the relationship has been examined in
research on animal behavior (e.g., Matzel et al., 2003, 2006),
human infants (e.g., Berg & Steinberg, 1985; Bornstein & Sigman,
1986), and in educational contexts (e.g., Coie, 1974; Maw &
Magoon, 1971). Voss and Keller (1983) emphasized the importance
of the GMA–exploration relationship in human development when
they noted that, ‘‘exploration is a form of intelligent behavior’’ (p.
122). Research in the cognitive literature suggests that higher-
GMA individuals are able to recognize and engage a greater
amount of novelty in the environment given their greater availabil-
ity of cognitive resources (Norman & Bobrow, 1975). Accordingly,
higher-GMA learners naturally perceive a relatively larger informa-
tion-knowledge gap because they are able to perceive greater
amounts of novelty in a complex environment relative to lower-
GMA learners. Given their higher levels of perceived novelty,
higher GMA learners engage in more exploratory behavior overall
during practice. Furthermore, research has shown that when given
control over the level of task complexity to practice in an active
learning environment, higher-GMA trainees select higher levels
compared to lower-GMA trainees (Hughes et al., 2013). By engag-
ing complexity, higher-GMA trainees are continually exposed to
novelty, which leads to maintenance of the information-knowl-
edge gap and to more sustained exploration across practice trials.

Hypothesis 4. GMA will be (a) positively related to average
exploration and (b) inversely related to the decline in exploration
across practice trials.
Pre-training task-related knowledge

When it comes to the acquisition of skill on the type of open,
complex tasks, common in active learning contexts, variability in
performance between learners often increases over the course of
practice and instruction in a fan-spread pattern such that those
with higher levels of knowledge and skill at the onset of training
improve at a faster rate than those with less knowledge and skill
(Ackerman, 2007). This phenomenon is sometimes referred to as
the ‘‘Matthew Effect’’ in that the ‘rich’ get ‘richer’ whereas the ‘poor’
do not (Ackerman, 2007; Stanovich, 1986). Research suggests that
this effect is prevalent in active learning environments such that
more experienced learners benefit more from active learning envi-
ronments than do novices (Kalyuga, 2007; Kalyuga, Chandler, &
Sweller, 2001; Scheiter & Gerjets, 2007). We propose that the fan-
spread effect in active learning environments can be partially
explained by differences in trainee willingness and capability to
explore. When encountering complex tasks, individuals with
greater expertise are better able to recognize novelty because they
pay attention to different aspects of the task, are less distracted by
superficial characteristics, and see unfamiliar task exceptions as
more analyzable (Haerem & Rau, 2007). These advantages allow
trainees higher in pre-training task-related knowledge to better
identify meaningful sources of novelty, leading to a larger informa-
tion-knowledge gap to resolve via exploration. Furthermore,
research has shown that when given the opportunity, trainees with
more pre-training experience select higher overall levels of task
complexity to practice in an active learning environment (Hughes
et al., 2013). Collectively, like the preceding rationale for GMA,
these findings suggest that trainees higher in pre-training task-
related knowledge are better equipped to explore in active learning.

Hypothesis 5. Pre-training task-related knowledge will be (a)
positively related to exploration and (b) inversely related to the
decline in exploration across practice trials.
Error framing

Main effect
Active learning interventions involve the use of design elements

to guide trainee self-regulatory processes (Debowski et al., 2001;
Keith & Frese, 2005; Kozlowski, Gully, et al., 2001). Error manage-
ment training (EMT) is one such intervention that has received
notable attention and empirical support (Keith & Frese, 2008). In
EMT, error-framing instructions are used to influence how trainees
interact with the training environment by encouraging and facili-
tating exploratory behavior (Keith & Frese, 2008). Error-approach
instructions frame errors as a beneficial part of the learning pro-
cess, whereas error-avoid instructions frame errors as mistakes
to be avoided. Error-approach instructions are thought to facilitate
learning by encouraging trainees to seek out the causes of their
errors through exploration (Dormann & Frese, 1994; Keith &
Frese, 2005, 2008).
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Despite the importance of exploration in EMT theory, to our
knowledge, only one study has directly examined the impact of
error-framing instructions on exploration during training.
Dormann and Frese (1994) found that error-approach training
was related to greater levels of exploration relative to procedural-
ized learning when teaching 30 psychology students to use statis-
tical software. Furthermore, they found that exploration was
positively related to learning. Interestingly, Dormann and Frese
(1994) noted that when trainees ignored instructions and explored
in the proceduralized condition, they demonstrated performance
levels similar to those in the error-approach condition. However,
because the training content substantially differed between the
two conditions, exploration was operationalized differently in each
condition. Consequently, exploratory behavior between the two
conditions could not be compared. To allow for a clearer examina-
tion of the effects of error-framing instructions on task exploration,
we sought to replicate the findings of Dormann and Frese (1994)
using consistent training content and a consistent operationaliza-
tion of exploration across conditions.

Hypothesis 6. Error-approach instructions compared to the error-
avoid instructions will lead to higher levels of exploration during
practice.
Attribute-treatment interactions
The interaction between ability and training structure on

learning outcomes is one of the most commonly purported attri-
bute-treatment interactions (ATI) in the training and educational
literatures (Cronbach & Snow, 1969; Goldstein & Ford, 2002;
Pashler, McDaniel, Rohrer, & Bjork, 2008; Snow & Lohman, 1984).
The logic is that lower-ability trainees need and do better in more
structured (e.g., proceduralized) instructional programs, whereas
higher-ability trainees prefer and do better in less structured
instructional programs. Structure is thought to inhibit the natural
learning strategies (e.g., exploration) used by higher-ability trainees
(Goldstein & Ford, 2002). In this vein, Gully et al. (2002) found that
higher-GMA trainees benefited more from error encouragement
than lower-GMA trainees. Negative error framing was thought to
impose a certain degree of structure on trainees whereas positive
error framing represented a more open, unstructured environment
(Gully et al., 2002). Although less work has focused on task-related
knowledge, it is likely to interact in a similar fashion as GMA with
elements of the training environment to influence behavior and out-
comes (Gully & Chen, 2010). We propose that trainee exploratory
behavior can help explain Gully et al.’s (2002) ATIs such that train-
ees higher in GMA and pre-training task-related knowledge will see
errors as a source of novelty and consequentially explore more in
error-approach environments than error-avoid environments. In
contrast, trainees lower in GMA and pre-training task-related
knowledge are less likely to see the novelty in errors. As a result,
their decisions to engage in exploration will be less affected by
error-framing instructions.

Hypothesis 7. The beneficial effect of error-approach instructions
on exploration will depend on trainee (a) GMA and (b) pre-training
task-related knowledge such that the effect will be larger for
trainees with higher GMA and pre-training task-related knowledge.
Method

Participants

Participants were 128 undergraduate males attending a large,
public university in the southwestern U.S. Due to computer
problems, data from seven participants were missing, resulting in
complete data from 121 participants. Participants ranged in age
from 18 to 28 (M = 19.16, SD = 1.30). Participants were randomly
assigned to one of three error-framing conditions: error-approach
(n = 39), error-avoid (n = 41), or no error framing (n = 41). Partici-
pants received research credit for a psychology course research
participation requirement.

Performance task

The performance task was Unreal Tournament 2004 (UT2004;
Epic Games, 2004), a commercially available first-person-shooter
computer game with many dynamic decision-making characteris-
tics (Kozlowski, Toney, et al., 2001); that is, UT2004 contains tech-
nology-mediated, shifting, ambiguous, and emergent task-qualities
which are important criterion-task features for studies of active
learning. In UT2004, participants compete against computer-
controlled opponents from the perspective of their character, which
they move and manipulate in a fast-paced dynamic setting. Using
weapons, the objective is to destroy the opponents while minimiz-
ing the destruction of one’s character. Participants start with a basic
weapon and can collect new weapons or resources (i.e., pick-ups) to
increase their character’s health, basic offensive and defensive
capabilities, and advanced capabilities (i.e., power-ups). The game
environment (i.e., the map) is arranged such that weapons and
pick-ups appear in consistent locations. A few special pick-ups
are available in locations only accessible by deliberate choice.
When an opponent or the participant’s character is destroyed, that
character reappears in a new location with the basic weapons and
capabilities. A trial (i.e., a game) ends when time runs out.

UT2004 involves a high degree of both psychomotor and cogni-
tive demands. Participants use a mouse and keyboard simulta-
neously to move and control their character. Participants must
learn how each weapon works, consider weapon strengths and
weaknesses, and be able to quickly decide which to use given the
circumstances. Moreover, participants must learn and remember
weapon and resource locations and, in some cases, use problem
solving to access those items. Although some approaches to task
performance are generally more effective than others, there is no
single optimal strategy in UT2004 for maximizing task perfor-
mance in all situations. The best tactics in each situation will
depend on the combination of several important and dynamic task
parameters. For example, depending on the range and location of
their opponents, their surroundings, and their character’s health,
participants must decide whether to move to find more health
resources or other pick-ups, change their weapon choice and com-
bat tactics, or move to find a more advantageous position.

Procedures

All participants were told that the purpose of the study was to
examine how people learn to play a dynamic and complex video-
game. Participants first completed an informed consent form fol-
lowed by a measure of videogame experience. They then
watched a 15-min training video on UT2004 explaining the basic
game controls, rules, and resources, followed by 3 min for practice
and familiarization with the basic controls, display, and game envi-
ronment without any opponents. Then, participants performed
two 5-min baseline trials against two opponents for which they
were instructed to ‘‘do your best.’’ UT2004 allows an objective level
of computer-controlled opponent difficulty that ranges from 1 to 8.
For the baseline trials, the opponents were set to perform at a
moderate level of difficulty (5) as determined by pre-study pilot
testing.

Next, error-framing instructions were read aloud and all
participants underwent three learner-guided practice sessions,
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each consisting of five 5-min trials against two opponents set at
the same difficulty as the baseline trials for a total of 15 practice
trials. All participants were instructed to view the practice sessions
as learning opportunities and to advance at their own pace.
Detailed performance feedback was available on the game screen
during and after every trial. Participants were also given a game
log to record their performance and make game-related notes
throughout practice.

Immediately following the last practice session, a manipulation
check of the error-framing instructions was administered. Next,
participants played two 5-min trials against two opponents at
the same difficulty and on the same map as the practice trials, test-
ing their post-training performance (i.e., analogical transfer). Par-
ticipants were instructed to ‘‘do your best’’ on each of these two
trials. Following the post-training test trials, participants entered
a period of non-use during which they completed a measure of
GMA and a test of task knowledge.

Finally, participants played two 5-min adaptive transfer trials.
Unlike the previous trials, tests of adaptive transfer included nine
opponents and were played on a map that was structured differ-
ently from the previous map, containing new interactive features,
and introducing the chance of being destroyed by environmental
hazards. In addition, the difficulty was raised one setting to 6 on
the 1-to-8 scale. At this elevated difficulty, opponents were faster,
more elusive, made better decisions, and were more unpredictable.
Participants were informed of these changes prior to testing and
were once again told to ‘‘do your best.’’ Participation in the study
lasted approximately 4 h.
Error-framing manipulation

Error-framing instructions were read aloud to participants at
the start of the first 5-trial practice session. Error-framing instruc-
tions were reiterated at the top of the game logs and abridged
error-framing instructions were read aloud before the second and
third practice sessions. All participants were told to view the prac-
tice trials as learning opportunities and that practice is beneficial
for learning. Error-approach instructions also communicated that
errors are beneficial for learning and encouraged participants to
make errors during the practice sessions. In contrast, error-avoid
instructions communicated that errors are detrimental to learning
and instructed participants to avoid making errors during practice.
Participants in the control condition received no error-framing
instructions. Following the last practice trial, participants
responded to two questions about their willingness to make errors
during practice. Participants in the error-approach condition indi-
cated they were more willing to make errors (M = 3.51, SD = 0.73)
compared to participants in the error-avoid condition (M = 2.66,
SD = 1.13, t = 4.31, p < .01, d = 1.16) and the no error-framing condi-
tion (M = 3.12, SD = 0.71, t = 1.98, p < .05, d = 0.53). Furthermore,
indicating a greater willingness to make errors, participants in
the error-approach condition destroyed their own character more,
on average, during practice (M = 12.10, SD = 6.64) than participants
in the error-avoid condition (M = 9.46, SD = 4.80, t = 2.05, p < .05,
d = 0.73) and the no error-framing condition (M = 9.54, SD = 5.21,
t = 2.11, p < .05, d = 0.71).
Measures

GMA
The 12-item short form (Arthur & Day, 1994) of the Advanced

Progressive Matrices (Raven, Raven, & Court, 1998) was used to
measure GMA. A Spearman–Brown odd–even split-half reliability
of .71 was obtained in the present study.
Pre-training task-related knowledge
We used a composite index of videogame experience and base-

line performance for our measure of pre-training task-related
knowledge. A 4-item scale was used to measure videogame expe-
rience; a proxy for domain knowledge. For the first two items, par-
ticipants responded using a 5-point Likert scale ranging from 1 (not
at all) to 5 (daily) to the following questions: (a) ‘‘Over the last
12 months, how frequently have you typically played video/com-
puter games?’’ (M = 3.50, SD = 1.02) and (b) ‘‘Over the last
12 months, how frequently have you typically played first-person
shooter video/computer games (e.g., Call of Duty, Half-Life, Halo,
Unreal Tournament)?’’ (M = 3.02, SD = 1.18). For the second two
items, participants indicated how many hours per week they typ-
ically play video/computer games (M = 4.57, SD = 4.83, min. = 0.00,
max. = 30.00) and how many hours per week they typically play
first-person shooter video/computer games (M = 2.81, SD = 4.01,
min. = 0.00, max. = 30.00). Scores for these four items were stan-
dardized and then averaged into a single videogame experience
score. Scores for the two baseline performance trials were averaged
(M = 0.26, SD = 0.11) and then standardized. Finally, the standard-
ized index of videogame experience and the standardized index
of baseline performance were averaged to yield a composite index
of overall pre-training task-related knowledge. Following recom-
mendations outlined by Wang and Stanley (1970), a composite
reliability of .81 was obtained for this index of task-related
knowledge.

Exploratory behavior
Exploratory behavior was coded in each practice trial from

video playbacks by the first author and one undergraduate coder
experienced with common videogame environments and strate-
gies. Coders underwent approximately 20 h of frame-of-reference
training in which they were familiarized with the UT2004 training
environment and the exploration scales. Coders independently
viewed game videos for each participant and rated exploratory
behavior using four 5-point scales. Video files were recorded and
stored in a way such that access to the videos ensured the coders
were blind to the experimental condition as well as information
regarding all predictor and criterion variables. Of the 1815 trial
videos coded (151.25 h of game play across 121 participants) a ran-
dom sample of 300 trial videos (20 participants) were rated by
both coders to examine interrater reliability. Intraclass correlation
coefficients (ICCs) were used to examine interrater reliability
(Shrout & Fleiss, 1979). As recommended by Cicchetti (1994), ICC’s
between .60 and .74 are considered good interrater reliability and
ICC’s above .75 are considered excellent interrater reliability.

The exploration scales were developed via a content analysis of
UT2004 in relation to how exploration has been conceptualized in
the extant literature on emphasis change exploration (Erev &
Gopher, 1999; Gopher et al., 1989; Yechiam et al., 2001), child
exploration (Hutt, 1966; Jennings, Harmon, Morgan, Gaiter, &
Yarrow, 1979), animal exploration (Dashiell, 1925; Nissen, 1930),
and active learning (Dormann & Frese, 1994). Because exploratory
behavior is defined in reference to specific task stimuli, developing
scales of exploration in the context of the specific task domain is
important for understanding how exploration operates in a practi-
cal learning context (Loewenstein, 1994). Therefore, three of the
scales in the current effort measured exploratory behavior in three
major game domains: (a) combat strategies, (b) weapons, and (c)
map. The fourth scale measured overall exploratory behavior.
Exploratory behavior was defined as an active interaction on the
part of the trainee with the training environment through the trai-
nee’s attempts at multiple solutions to the problem at hand
(Dormann & Frese, 1994).

The variety of combat strategies scale (ICC = .70) ranged from 1
(very few strategies tried) to 5 (a great deal of strategies tried). The
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variety of weapons used scale (ICC = .69) ranged from 1 (very few
weapons tried) to 5 (a great deal of weapons tried). The amount of
map visited scale (ICC = .81) ranged from 1 (very little map visited)
to 5 (entire map visited). Each of these three scales were designed to
capture how thoroughly trainees were exploring various sources of
novelty in each of the major game domains. The overall explor-
atory behavior scale (ICC = .77) provided a rating of exploration
similar to that used in previous research on active learning (i.e.,
Dormann & Frese, 1994) and accounted for characteristics of
exploratory behavior not captured by the other scales. For this
scale, coders were instructed to rate exploratory behavior in the
context of participant behavior up until the trial being coded. In
this way, the overall exploration scale captured exploration in
the context of the other trials and took into consideration unique-
ness in each learner’s approaches relative to previous trials. This
scale ranged from 1 (very little exploratory behavior) to 5 (a great
deal of exploratory behavior). Correlations among the exploration
scale scores ranged from .52 to .65. Together these scales combined
to capture both the overall amount (i.e., the total variety of solu-
tions explored during each trial) and uniqueness (i.e., the fre-
quency of brand-new approaches explored during each trial) of
participant exploration during practice. A confirmatory factor anal-
ysis indicated the four scales loaded on a single factor. Therefore,
the four scale scores were averaged for each trial to create an over-
all trial-level exploration index. Coefficient alpha for this measure
was .89.

Content validity of the individual exploration scales was exam-
ined using an approach similar to that recommended by
MacKenzie, Podsakoff, and Podsakoff (2011). Five graduate stu-
dents unfamiliar with the purpose of the study served as subject
matter experts (SMEs) and were trained on the definition and core
aspects of exploration. SMEs then independently rated how well
each exploration scale definition and accompanying benchmarks
captured the core aspects of exploration on a scale ranging from
0 (Not at all) to 4 (Very much). The mean SME ratings across the
four scales ranged from 3.00 to 3.70, showing support for the con-
tent validity of the scales in reference to the conceptualization of
exploratory behavior.

To examine the sensitivity of the exploration scale scores to
detect variations in exploratory behavior, we used a video-based
construct validation procedure recommended by Podsakoff,
Podsakoff, MacKenzie, and Klinger (2013). The purpose of the
video-based construct validation procedure is to determine if vari-
ations in the construct of interest cause corresponding variations in
the scores of the measures utilized. First, script manipulations
were developed to reflect various levels of exploration and trends
in exploration across trials. Next, video manipulations of explora-
tion based on the scripts were produced, refined, and validated.
Finally, the video manipulations were viewed and coded by nine
undergraduate student raters unfamiliar with the purpose of the
study to examine if ratings are sensitive to variations of the con-
struct represented in the video manipulations. Hierarchical linear
modeling (HLM) blocking on coder, confirmed that the manipula-
tion of exploration was strongly related to mean ratings of explor-
atory behavior (B = 2.86, t(33) = 55.85, p < .01). Furthermore, the
trial by exploration manipulation interaction was significant
(B = 0.56, t(142) = 16.25, p < .01) indicating that exploration ratings
reflected manipulated changes in exploration across trials.

Learning outcomes
Scores for baseline skill, practice performance, analogical trans-

fer performance, and adaptive transfer performance were calcu-
lated using an identical function of multiple in-game statistics.
Specifically, performance scores were computed by dividing partic-
ipant kills (i.e., number of times a participant destroyed an oppo-
nent) by the quantity of kills plus deaths (i.e., number of times a
participant’s own character was destroyed) plus participant rank
(i.e., finishing in first, second, or third place relative to the oppo-
nents in the trial) all of which were displayed on-screen during
and at the end of every trial. Scores could range from 0 to approx-
imately 1. This formula is similar to the one used by the creators of
UT2004 to create an index of efficiency and was used in this study
because it accounts for multiple aspects of performance. Task
knowledge was measured with a 20-item multiple-choice test
reflecting a mix of basic, procedural, and strategic knowledge.
Results

Exploration as a predictor of learning outcomes

Practice performance
Means, standard deviations, and intercorrelations for the

between-person and within-person variables are presented in
Table 1. We used HLM (Raudenbush & Bryk, 2002) to examine
the between- and within-person effects of exploration on practice
performance. Consistent with previous research (e.g., Gully et al.,
2002), condition was dummy coded with the error-approach con-
dition set 0,0 as the comparison group. GMA, pre-training task-
related knowledge, and between-person exploration were grand-
mean centered. Within-person exploration was person-mean cen-
tered. To facilitate interpretation of the average main effects in the
presence of dynamic trends, the practice trial trajectory was cen-
tered on the middle (eighth) practice trial. The linear and quadratic
trajectories of practice trial (i.e., performance over practice trials),
within-person exploration, and the linear practice trial �within-
person exploration interaction were Level 1 predictors. GMA,
pre-training task-related knowledge, condition, between-person
exploration, and the capability� between-exploration interactions
were Level 2 predictors.

The ICC of the practice performance unconditional model indi-
cated that 50% of the variance in practice performance was
between participants and 50% of the variance was within partici-
pants. As can be seen in Model 1 of Table 2, the linear (b = .03,
p < .01) and quadratic (b = �.01, p < .01) trajectories of practice per-
formance were significant, indicating that practice performance in
this task followed a classic skill-acquisition curve (Fitts & Posner,
1967). Task-related knowledge (b = .54, p < .01) was positively
related to average practice performance. Additionally, as shown
by the linear practice trial � condition interactions in Model 2 of
Table 2, error framing had dynamic effects on practice performance
(Fig. 2) such that the performance among participants in the error-
approach condition was worse early in practice, but improved at a
faster rate relative to those in the error-avoid condition (b = �.02,
p < .05) and the no error instructions condition (b = �.02, p < .05).

Hypotheses 1a was supported. As shown in Model 3 of Table 2,
both between-person exploration (b = .13, p < .01) and within-per-
son exploration (b = .04, p < .01) were positively associated with
practice performance. In contrast, Hypotheses 2a and 2b were
not supported. As shown in Model 4 of Table 2, neither GMA nor
task-related knowledge moderated the between- or within-person
exploration effects on practice performance.
Post-practice learning outcomes
To examine the relationships between exploration and post-

practice learning outcomes, we conducted a series of moderated
hierarchical regression analyses. We entered GMA and pre-training
task-related knowledge first, followed by the dummy-coded train-
ing conditions, followed by exploration, followed by the GMA and
pre-training task-related knowledge interactions with exploration.
Hypothesis 1b was supported. As shown in Table 3, exploration
was positively related to all proposed learning outcomes including



Table 1
Means, standard deviations, and intercorrelations of study variables at the between-person and within-person levels.

Variable M SD 1 2 3 4 5 6 7 8 9

Between-person level
1. Error approach 0.32 0.47
2. Error avoid 0.34 0.48 �.49**

3. Control 0.34 0.48 �.49** �.51**

4. GMA 7.41 2.35 �.07 .05 .02
5. Pre-training task-related knowledge 0.00 0.84 .04 �.09 .05 .20*

6. Exploration 3.02 0.45 �.04 �.12 .16� .22* .33**

7. Practice performance 0.33 0.12 .05 �.04 �.01 .26** .76** .42**

8. Task knowledge 11.53 2.65 .03 .02 �.05 .38** .50** .39** .57**

9. Analogical transfer 0.38 0.15 .07 .00 �.07 .23** .66** .38** .79** .58**

10. Adaptive transfer 0.21 0.09 .02 .01 �.03 .24** .61** .41** .77** .40** .64**

ICC M SD 1 2

Within-person level
1. Practice trial – 0.00 4.32
2. Exploration .66 3.02 0.71 �.27**

3. Practice performance .50 0.33 0.16 .14** .18**

Note. N between-person = 121. N within-person = 1815. GMA = general mental ability. ICC = intraclass correlation coefficient. Pre-training task-related knowledge is a
composite of pre-training task-related experience and baseline skill.

� p < .10 (two-tailed).
* p < .05 (two-tailed).

** p < .01 (two-tailed).

Table 2
HLM results for the prediction of practice performance.

Variable Model 1 Model 2 Model 3 Model 4

B SE B b B SE B b B SE B b B SE B b

Intercept (c00) .341** .007 .00 .346** .012 .00 .347** .012 .00 .347** .012 .00
Linear practice trial trajectory (c10) .005** .001 .03 .008** .001 .05 .008** .001 .05 .008** .001 .05
Quadratic practice trial trajectory (c20) �.001** .000 �.01 �.001** .000 �.01 �.001** .000 �.01 �.001** .000 �.01
GMA (c01) .006� .003 .08 .006* .003 .08 .004 .003 .06 .005 .003 .07
Pre-trng. task-related knowledge (c02) .101** .008 .54 .102** .008 .54 .094** .008 .50 .094** .008 .49
Linear practice trial � GMA (c11) .000 .000 .00 .000 .000 .00 .000 .000 .00 .000 .000 .00
Linear practice trial � pre-trng. task-related knowledge (c12) .002� .001 .01 .002� .001 .01 .001 .001 .01 .001 .001 .00
Dummy control (c03) �.012 .017 �.07 �.017 .016 �.11 �.017 .017 �.10
Dummy error-avoid (c04) �.002 .017 �.01 .000 .016 �.00 .000 .017 .00
Linear practice trial � dummy control (c13) �.004* .002 �.02 �.004* .002 �.02 �.004* .002 �.02
Linear practice trial � dummy error-avoid (c14) �.004* .002 �.02 �.004* .002 �.02 �.004* .002 �.02
Between-person exploration (c05) .047** .016 .13 .047** .016 .13
Within-person exploration (c30) .012** .005 .04 .013** .005 .05
Linear practice trial � between-person exploration (c15) .001 .002 .00 .001 .002 .00
Linear practice trial �within-person exploration (c40) .001 .001 .00 .001 .001 .00
Between-person exploration � GMA (c06) .004 .006 .03
Within-person exploration � GMA (c31) .000 .002 .00
Between-person exploration � pre-trng. task-related

knowledge (c07)
�.012 .017 �.03

Within-person exploration � pre-trng. task-related
knowledge (c32)

�.011 .006 �.03

Note. N between-person = 121. N within-person = 1815. The error-approach condition was set as the comparison group. Dummy control: Error approach = 0, Control = 1.
Dummy error avoid: Error approach = 0, Error avoid = 1.

� p < .10 (two-tailed).
* p < .05 (two-tailed).

** p < .01 (two-tailed).
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practice performance (b = .19, p < .01, DR2 = .029), task-knowledge
(b = .23, p < .01, DR2 = .042), analogical transfer (b = .21, p < .01,
DR2 = .030), and adaptive transfer (b = .23, p < .01, DR2 = .047).
However, again, Hypotheses 2a and 2b were not supported. Nei-
ther GMA nor task-related knowledge moderated the effects of
exploration on any of the learning outcomes.

Dynamics and antecedents of exploration

The dynamics of exploration and the effects of GMA, task-
related knowledge, error framing, and the error framing � GMA
and task-related knowledge interactions on exploratory behavior
were tested using a series of HLMs with exploration as the depen-
dent variable. GMA and pre-training task-related knowledge were
grand-mean centered. The linear trajectory of exploration over
practice trials was set as a Level 1 predictor and was centered on
the middle (eighth) practice trial. GMA, pre-training task-related
knowledge, condition, and the condition � individual difference
interactions were set as Level 2 predictors.

The ICC of the exploration unconditional model indicated that
66% of the variance in exploration was between-person and 34%
was within-person. As shown in Model 1 of Table 4, the linear tra-
jectory of exploration over the practice trials supported Hypothesis
3. On average, exploratory behavior decreased across the practice



Fig. 2. Effect of error framing on practice performance over practice.
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trials (b = �.06, p < .01). Although the relationship between GMA
and average exploration was positive as predicted, the magnitude
of this effect was close to but did not reach conventional levels
of statistical significance in Model 1 (b = .10, p = .07). Thus, the
Table 3
Hierarchical multiple regression results for the prediction of learning outcomes.

Model/variable B

Practice performance
1. GMA .005

Pre-training task-related knowledge .093**

2. Dummy control �.019
Dummy error-avoid �.002

3. Exploration .049**

4. GMA � exploration .004
Pre-training task-related knowledge � exploration �.025

Task knowledge
1. GMA .014**

Pre-training task-related knowledge .059**

2. Dummy control �.032
Dummy error-avoid .002

3. Exploration .069**

4. GMA � exploration �.002
Pre-training task-related knowledge � exploration �.015

Analogical transfer
1. GMA .003

Pre-training task-related knowledge .098**

2. Dummy control �.046�

Dummy error-avoid �.008
3. Exploration .066**

4. GMA � exploration �.008
Pre-training task-related knowledge � exploration �.026

Adaptive transfer
1. GMA .003

Pre-training task-related knowledge .057**

2. Dummy control �.012
Dummy error-avoid .011

3. Exploration .047**

4. GMA � exploration .002
Pre-training task-related knowledge � exploration .008

Note. N = 121. The regression weights shown are from the final model. Dummy contr
avoid = 1.
* p < .05 (two-tailed).
� p < .10 (two-tailed).

** p < .01 (two-tailed).
results in this model did not support Hypothesis 4a. However,
the results in Model 1 supported Hypothesis 5a, showing that
task-related knowledge (b = .19, p < .01) was positively related to
average exploration. Hypothesis 4b was not supported; GMA was
not related to the changes in exploration across practice trials.
However, Hypothesis 5b was supported. There was an interaction
between task-related knowledge and the linear exploration trajec-
tory (b = .02, p < .05) such that participants higher in task-related
knowledge were more likely to continue exploring in later practice
trials whereas those lower in task-related knowledge exhibited a
steeper decline in exploratory behavior (Fig. 3). As shown in Model
2, Hypothesis 6 was not supported. No statistically significant main
effects were found for error framing on exploration. Hypothesis 7a
received mixed support. As shown in Model 3 of Table 4, the mod-
erating effect of error framing on the GMA–exploration relation-
ship (Fig. 4) was close to, but did not reach conventional levels of
statistical significance (b = �.19, p = .09). However, given the likeli-
hood of multicollinearity resulting from the relationship between
GMA and task-related knowledge and the similarities in both pro-
posed interactions with error framing, we tested each interaction
in separate models following the recommendations of
Appelbaum and Cramer (1974). After removing the suppressing
effects of task-related knowledge, the main effect of GMA was
positive and significant (b = .14, p < .01) showing support for
Hypothesis 4a, and the interaction between GMA and error fram-
ing was also statistically significant (b = �.27, p < .05) showing sup-
port for Hypothesis 7a. Specifically, higher-GMA trainees (+2z)
explored more in the error-approach condition than in the error
avoid condition (t(115) = 2.40, p < .05), whereas for low GMA train-
SE b R2 DR2

.003 .09 .584**

.009 .67

.017 �.08 .586** .002

.017 �.01

.017 .19 .614** .029**

.006 .04 .622** .007

.018 �.09

.005 .25 .329**

.013 .38

.025 �.12 .336** .006

.025 .00

.024 .23 .378** .042**

.009 �.01 .381** .002

.026 �.05

.004 .05 .451**

.012 .59

.024 �.15 .462** .011

.024 �.03

.023 .21 .492** .030**

.009 �.07 .503** .011

.024 �.08

.003 .09 .387**

.008 .53

.016 �.07 .392** .005

.016 .06

.016 .23 .439** .047**

.006 .03 .441** .002

.017 .03

ol: Error approach = 0, Control = 1. Dummy error avoid: Error approach = 0, Error



Table 4
HLM results for the prediction of exploratory behavior.

Variable Model 1 Model 2 Model 3

B SE b B SE b B SE b

Intercept (c00) 2.999** .044 .00 3.002** .065 .00 3.001** .065 .00
Linear exploration trajectory (c10) �0.046** .005 �.06 �0.041** .009 �.06 �0.041** .009 �.06
GMA (c01) 0.030� .016 .10 0.030� .016 .10 0.061* .026 .20
Pre-training task-related knowledge (c02) 0.162** .045 .19 0.155** .045 .18 0.223** .067 .26
Linear exploration � GMA (c11) 0.000 .002 .00 0.000 .002 .00 0.000 .002 .00
Linear exploration � pre-training task-related knowledge (c12) 0.019** .006 .02 0.018** .006 .02 0.018** .006 .02
Dummy control (c03) 0.110 .091 .15 0.110 .090 .15
Dummy error avoid (c04) �0.040 .092 �.06 �0.046 .090 �.06
Linear exploration � dummy control (c13) �0.007 .013 �.01 �0.007 .013 �.01
Linear exploration � dummy error avoid (c14) �0.008 .013 �.01 �0.008 .013 �.01
GMA � dummy control (c05) �0.042 .037 �.14
GMA � dummy error avoid (c06) �0.059� .035 �.19
Pre-training task-related knowledge � dummy control (c07) �0.141 .103 �.17
Pre-training task-related knowledge � dummy error avoid (c08) �0.133 .099 �.16

Note. N between-person = 121. N within-person = 1815. The error-approach condition was set as the comparison group. Dummy control: Error approach = 0, Control = 1.
Dummy error avoid: Error approach = 0, Error avoid = 1.

� p < .10 (two-tailed).
* p < .05 (two-tailed).

** p < .01 (two-tailed).

Fig. 3. Decrease in exploration across practice trials by pre-training task-related
knowledge. High and low = ±2z. Slopes (bs): high pre-training task-related knowl-
edge = �.01, p > .05; low pre-training task-related knowledge = �.10, p < .01 (two-
tailed).

Fig. 4. Interaction of GMA and error framing. High and low = ±2z. Slopes (bs): error-
approach = .20, p < .01; control = .04, p > .05; error-avoid = .01, p > .05 (two-tailed).
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ees (�2z) the difference in exploration between the error-approach
and error avoid conditions was not statistically significant
(t(115) = �1.64, p > .05). Although the interaction between task-
related knowledge and error framing showed a similar pattern
such that trainees with higher task-related knowledge (+2z) gener-
ally explored more in the error-approach than error-avoid condi-
tion, this difference (t(115) = 1.80, p > .05) and its related
interaction (b = �.22, p > .05) were not statistically significant.
Accordingly, Hypothesis 7b was not supported.
Tests of indirect effects of individual differences on learning through
exploration

Our model indicates that exploration is a mechanism through
which GMA and pre-training task-related knowledge are linked to
learning outcomes. Accordingly, we used the SOBEL macro for SAS
developed by Preacher and Hayes (2004) to examine and compare
the simple indirect effects of GMA and pre-training task-related
knowledge on each of the learning outcomes via exploration.
Bootstrapping was used to obtain confidence intervals. Across all
learning outcomes, the results showed statistically significant
indirect effects through exploration for both GMA (practice perfor-
mance: ab = .083, 95% CI = .007–.180, R2

ab = .038; task knowledge:
ab = .071, 95% CI = .008–.162, R2

ab = .052; analogical transfer: ab =
.078, 95% CI = .009–.177, R2

ab = .030, adaptive transfer: ab = .082,
95% CI = .005–.180, R2

ab = .033) and pre-training task-related
knowledge (practice performance: ab = .063, 95% CI = .017–.122,
R2

ab = .144; task knowledge: ab = .085, 95% CI = .026–.163, R2
ab =

.096; analogical transfer: ab = .060, 95% CI = .014–.122, R2
ab = .117,

adaptive transfer: ab = .076, 95% CI = .023–.144, R2
ab = .121).

Furthermore, across all learning outcomes, the indirect effects were
larger for pre-training task-related knowledge than for GMA (mean
R2

ab = .119 versus .038) indicating that learning resulting from
exploration is more strongly associated with task-relevant than
general information-processing capabilities.
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Discussion

Exploration is a fundamental process guiding how people inter-
act with their surroundings and learn. Moreover, exploration is
central to active learning, which has garnered growing empirical
attention in the organizational training literature (Bell &
Kozlowski, 2008, 2010). In the following sections, we review the
key findings of the current study in relation to the effects of explor-
atory behavior on learning outcomes. Next, we discuss the rela-
tionships between task exploration and capability-based
individual differences with a focus on how the pattern of results
speaks to common criticisms of exploration-based training and to
the domain-specific nature of exploration. Then, we discuss the
effects of error framing on exploratory behavior and the similari-
ties of the ATI found in the current study to those found in previous
research. Finally, we emphasize the importance of measuring
exploration directly and discuss how exploratory behavior fits in
theories of self-regulated learning. We finish with a discussion of
the limitations to the current study and outline areas of future
research.
The relationship between exploration and learning outcomes

The value of active learning centers on the proposition that task
exploration is beneficial to learning outcomes. However, much of
the research on exploration in active learning has operationalized
exploration as an intervention or a design element (Bell &
Kozlowski, 2008) rather than as a dynamic information-gathering
behavioral self-regulatory process. The current study contributes
to this literature by directly measuring exploratory behavior and
examining a variety of exploration–learning relationships in an
active learning context. Furthermore, by adopting a between-
and within-person approach, we were able to examine how learn-
ing is associated with fluctuations in exploratory behavior during
practice.

Overall, the results showed consistent support for the predic-
tions of active learning theory regarding the benefits of explora-
tion. Exploration incrementally predicted practice performance
and post-practice knowledge, performance, and adaptability out-
comes beyond the influence of GMA and pre-training task-related
knowledge. Furthermore, the positive effect of exploration found at
the within-person level suggests that exploration can also benefit
episodic performance when learning dynamic, complex, open
tasks. Thus, it may be more appropriate to conceptualize explora-
tion as a proximal self-regulation pathway to performance
improvement and adaptability rather than as a training design ele-
ment (cf. Bell & Kozlowski, 2008).

Nevertheless, the benefits of exploration found in the present
study may not translate to all training contexts. For example, one
could expect that encouraging exploration in simple tasks or tasks
with clearly defined protocols might be distracting or counterpro-
ductive. Furthermore, it would be unwise to encourage learners to
explore in dangerous situations when risks cannot be reduced
within the relative safety of the training environment. As such,
although targeting exploration shows promise in complex task
training, trainers should always carefully consider if the task to
be learned is amenable to exploratory behavior and ensure it is
appropriate for active learning interventions.
Capability-based individual differences and exploration

Direct versus moderating effects and the criticisms of discovery
learning

In the present study, we examined two pathways by which
capability-based individual differences might be associated with
learning in relation to exploration; namely (a) a direct effect in
which capability stimulates the occurrence of exploration and (b)
a moderating effect such that capability influences the extent to
which trainees are able to learn from exploration. Each pathway
carries important implications for training design. For example, a
direct effect would suggest that some learners (i.e., low-capability
learners) may need additional support, guidance, or encourage-
ment to prevent them from settling prematurely on suboptimal
strategies and missing important information in discovery (i.e.,
exploration-based) learning environments (Mayer, 2004). Alterna-
tively, a moderating effect would suggest that the value of discov-
ery approaches would ultimately be limited for learners with
limited cognitive resources and that encouraging additional
exploratory behavior may serve to further overwhelm low-capabil-
ity learners (Kirschner et al., 2006).

Collectively, our findings supported direct effects of capability
on exploratory behavior, but not moderating effects of capability
on the exploration–learning relationship. Thus, problems associ-
ated with discovery environments may be attributable to differ-
ences in exploratory tendencies among learners rather than to
excessive cognitive demands required to process information gath-
ered during exploration. In this regard, we argue that a problem
with discovery learning is in the assumption that all trainees will
elect to explore as much as they should when given the opportu-
nity. In the present study, we demonstrated that this assumption
is perhaps untenable, which can help explain why some trainees
miss important content when given control over the learning pro-
cess (Mayer, 2004). In this respect, we found that lower-GMA
trainees and trainees with less pre-training task-related knowledge
were most at risk.

Accordingly, our findings support the recommendations of
Mayer (2004), Kirschner et al. (2006), and others (Bell &
Kozlowski, 2002, 2008; Debowski et al., 2001) who argue that
guidance should be provided to some learners during explora-
tion-based learning. However, we hope to help clarify theory
regarding the role of guidance in two ways. First, we argue that
guidance should encourage continuous, systematic exploration.
Specifically, guidance should provide a coherent mental frame-
work to allow trainees to make sense of and explore the training
environment. Such knowledge structures come naturally to some
trainees but not to others depending on their pre-training abilities
and experiences (Gitomer, 1988; Kraiger, Salas, & Cannon-Bowers,
1995). Second, our findings showed that, on average, exploration
declined across practice trials. However, trainees higher in pre-
training task-related knowledge maintained higher levels of explo-
ration, even in later practice sessions. These results corroborate the
findings of van der Linden, Sonnentag, Frese, and Van Dyck (2001)
who found that experienced participants were better able to over-
come manipulated mental fatigue and use systematic exploration
relative to inexperienced participants when performing a complex
task. Perhaps if trainees are made aware of their tendency to settle
into relatively ineffective strategies as training progresses (Seagull
& Gopher, 1997), they will be more likely to continue exploring.
Thus, the encouragement of exploratory behaviors and feedback
on trainee exploratory tendencies might be especially beneficial
for trainees low in pre-training task-related knowledge. In this
manner, guidance may not need to be tailored to meet individual
performance deficiencies per se. For example, if knowledge of
results are provided across different performance components dur-
ing the training process, trainees should be better able to compare
and contrast the effectiveness of the strategies they attempt,
allowing for more systematic exploration (Debowski et al., 2001).
Furthermore, it may be beneficial to provide trainees with a degree
of proceduralized instruction early in training to allow them to
develop the requisite knowledge structures to engage in purpose-
ful exploration upon entering an active learning environment.
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The domain-specific nature of exploration
By comparing similar pathways by which GMA and pre-training

task-related knowledge are linked to learning outcomes in relation
to exploration, our findings suggest that exploration is largely a
domain-specific rather than a general phenomenon. In other
words, exploration may be more a product of experience, knowl-
edge, and capability in a domain than general information-process-
ing ability. Thus, individuals who explore prolifically in one context
may not explore in another. Nevertheless, it is important to
acknowledge that GMA is an important predictor of task-related
knowledge (Schmidt & Hunter, 1992). Therefore, many of the
effects of GMA on exploration may operate through task-related
knowledge, which is more proximal to exploration. Moreover,
our results showed that GMA uniquely predicted exploration
beyond its relationship with pre-training task-related knowledge.
Thus, when identifying individuals to take part in active learning,
it is important to ensure that trainees have the capability to engage
in exploration during practice.

Error framing and exploration

In the present study, we looked to isolate the effects of error
framing—an intervention designed to influence trainee motiva-
tional self-regulatory processes—on trainee exploratory behavior.
In doing so, we did not replicate the positive main effect of error
management training (EMT) on exploration found by Dormann
and Frese (1994). This finding runs contrary to the common but
rarely tested assumption that error framing influences learning
outcomes through increased trainee willingness to engage in
exploratory behavior.

One explanation for the discrepancy between our findings and
those of Dormann and Frese is that in Dormann and Frese (1994)
other aspects of EMT training besides the framing of errors (e.g.,
instructor involvement or task commands) may have affected
how trainees explored. By isolating the error-framing component
of EMT rather than comparing EMT as a whole to an alternative
proceduralized-learning approach (cf. Dormann & Frese, 1994),
our conclusions speak to the effects of error-framing instructions,
specifically, on exploration and not other aspects of EMT. Another
explanation pertains to our finding that the effect of error framing
on exploration was one of moderation involving an interaction
with GMA. Thus, error framing had differential effects on tenden-
cies to explore, such that higher-GMA participants explored more
under error-approach than error-avoid instructions. This interac-
tion, shown in Fig. 4, is similar to the ATIs found by Gully et al.
(2002) for GMA on performance and self-efficacy outcomes. This
convergence in the pattern of ATIs implies that differences in
trainee willingness to explore under error-approach relative to
error-avoid instructions may help explain differences in learning
outcomes found in previous research. Accordingly, trainers should
consider alternatives to error framing for fostering exploration in
trainee populations that cover a wide range of GMA.

Direct measurement of exploration and the importance of behavioral
self-regulation

One may question if a behavioral focus is appropriate when
defining exploration and if doing so ignores the cognitive aspects
of learning (Mayer, 2004). Clearly cognitive, motivational, and
emotional self-regulation processes are important in active learn-
ing theory (Bell & Kozlowski, 2008, 2010). Accordingly, there is a
relatively well-developed empirical literature on these topics
(e.g., Brown & Ford, 2002; Debowski et al., 2001; Keith & Frese,
2005). However, less research attention has been given to under-
standing behavioral self-regulatory processes. Yet, as Kozlowski,
Toney, et al. (2001) noted, ‘‘doing, thinking, and feeling all affect
each other’’ and that ‘‘all three are engaged concurrently, such that
whenever a trainee has an experience which stimulates her to
practice more, she will simultaneously become more cognizant
about her practice behaviors’’ (p. 94). When instruction and train-
ing are designed to encourage individuals to engage in various cog-
nitive, motivational, and emotion-based self-regulation activities
during practice, it is expected that many benefits can be attributed
to some change in behavior (Kozlowski, Toney, et al., 2001). Thus, a
focus on exploration provides additional insights into learning pro-
cesses by drawing attention to the behavioral component of self-
regulated learning that is often missing in the empirical literature.
By measuring exploratory behavior directly in relation to key ante-
cedent and mediating variables articulated in models of active
learning, researchers will be better able to pinpoint how to lever-
age specific training elements and eliminate those that are redun-
dant or detrimental to learning.

Limitations

It is important to acknowledge several limitations of the present
study when looking ahead to future research. First, the training
task used in the present study involved a combination of cognitive
and psychomotor demands characteristic of many synthetic learn-
ing environments (SLEs; Cannon-Bowers & Bowers, 2010) that may
differ from more traditional training programs that focus on the
development of declarative and procedural knowledge. Yet, with
the increasing use of technology in training (American Society for
Training and Development, 2010), the entrance of a more techno-
logically savvy generation into the workplace (Alsop, 2008), and
a shift away from only emphasizing procedural knowledge (Ford,
Kraiger, & Merritt, 2010), computer simulations and games are
becoming more common in training. To date there is little empiri-
cal research examining learning processes and outcomes for SLE
training environments (Wilson et al., 2009). The present study con-
tributes much needed theoretical development regarding learning
processes in SLEs. Nevertheless, as we discussed earlier, the bene-
fits of exploration are not likely to translate to simple task learning
in which an optimal approach is readily available, as learner effort
would likely be better spent practicing and automating optimal
approaches. In general, more research including more diverse sam-
ples and tasks across a variety of real-world training contexts is
needed to establish the types of tasks and learning environments
for which exploration and active learning is beneficial to learning.

In addition, it is important to note that the present study lacked
a direct manipulation of exploration. As such, one is limited in the
causal conclusions one can make regarding the direction of the
relationship between exploration and practice performance.
Rather, our findings for this relationship are descriptive of a lear-
ner’s natural exploratory tendencies given that exploration and
practice performance were assessed concurrently. However, the
precise direction of this relationship remains uncertain. Future
research should combine training interventions intended to influ-
ence exploratory behavior during practice with direct measures
of exploration and its mechanisms (i.e., novelty, complexity, and
information-knowledge gaps) and use more advanced statistical
approaches (e.g., cross-lagged latent growth modeling; Curran &
Bollen, 2001) in order to make stronger causal conclusions regard-
ing the impact of exploratory behavior on training performance
and distal learning outcomes.

Future directions

In general, future research should focus on expanding, testing,
and refining theoretical models of curiosity and exploration in
training and development contexts. Although recent research
highlights their predictive potential and centrality in the learning
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process (e.g., Kang et al., 2009; von Stumm, Hell, & Chamorro-
Premuzic, 2011), curiosity and exploration are often overlooked
in the organizational sciences. Specifically, future work should
include direct measurements of perceptions of novelty and com-
plexity as antecedents to exploration as these perceptions are cen-
tral underlying mechanisms to theories of exploration (Berlyne,
1966; Litman, 2005; Loewenstein, 1994). Such an approach would
help training researchers develop a fuller understanding of the
constraints that inhibit learners from exploring before and after
novelty and complexity are perceived. For example, fatigue has
been shown to inhibit exploration, particularly for low-experience
learners (van der Linden, Frese, & Sonnentag, 2003). Thus, future
research could study the effect of distributed versus massed prac-
tice on learner fatigue, exploration, and perceptions of novelty and
complexity and the extent to which these relationships help
explain the learning advantages of spaced practice (Donovan &
Radosevich, 1999). Furthermore, future research should identify
instances where the relationships between exploration and
task-related knowledge may be negative or curvilinear (i.e.,
inverted-U shaped). When learning simple and repetitive tasks,
high-capability individuals may explore more initially but then
exhaust sources of novelty and thus decrease exploration more
rapidly relative to low-capability individuals (Berlyne, 1970). This
is a pattern characteristic of the exploration/exploitation tradeoff
whereby learners transition from exploring to a greater emphasis
on utilizing learned knowledge and skill once a large proportion
of novelty in a task domain has been resolved (Stafford & Dewar,
2013). Under these conditions, the effect of pre-training task-
related knowledge on exploration may show a negative trajectory
interaction with exploratory behavior such that individuals higher
in task-related knowledge engage in more exploration early in
practice but less later in practice. In general, more research should
utilize direct measurements of exploration in an effort to develop a
greater understanding of the boundary conditions and contingen-
cies on the dynamics and effects of exploration.

Along these lines, learners encounter a wide range of informa-
tion in exploration-based environments and must make decisions
on which pieces of information to explore and which to ignore.
There is evidence that learners prefer information that will help
them discriminate between two hypotheses over information that
helps reduce more general levels of uncertainty (Gureckis &
Markant, 2012). However, learners may use multiple strategies
depending on their familiarity with the learning content and if they
are in more of a declarative, compilation, or proceduralized stage of
learning (Anderson, 1982; Kanfer & Ackerman, 1989). Research
should clarify the processes and patterns by which learners choose
to explore specific information and how exploration is related to
and distinct from hypothesis-driven experimentation. In this
regard, think aloud protocols (Ericsson & Simon, 1980) show prom-
ise as a methodology that can provide insights into trainee deci-
sions to explore (e.g., van der Linden et al., 2003).

Furthermore, a greater empirical focus on the dynamics of cog-
nitive, motivational, emotional, and behavioral self-regulatory pro-
cesses in active learning training will help cultivate an important
theoretical foundation for facilitating the design and implementa-
tion of evidence-based dynamic interventions. For example,
research utilizing repeated measures designs coupled with sophis-
ticated analytical methods that allow for the establishment of
directional relationships would help to disentangle the complex
patterns of cause-and-effect between exploration and other
self-regulatory processes (e.g., metacognition, self-efficacy, and
emotion control). Moreover, future research should take into
consideration the complexities and interrelationships of self-
regulatory processes (Kozlowski, Toney, et al., 2001; Sitzmann &
Ely, 2011) as they change in relation to each other and as a function
of skill progression. Research has only begun to scratch the surface
of this topic, however the design and testing of adaptive and
dynamic interventions offers great potential for advancing training
theory and practice toward the goal of increasing the responsive-
ness of training to the changing needs of learners as skill
progresses (Anderson et al., 2004).

Finally, there are a number of individual differences beyond
GMA and task-related knowledge that may be related to explora-
tion via trainee perceptions and preferences for novelty and com-
plexity, such as goal orientations (Dweck, 1986), typical
intellectual engagement (Goff & Ackerman, 1992), openness
(Costa & McCrae, 1992), trait affect (Judge, 1992), and interests
and trait complexes (Ackerman, 2003). Future research should
examine how these and other individual differences influence nov-
elty and complexity in the exploration process in order to deter-
mine the extent to which exploration is driven by trainee
information-processing capabilities relative to characteristics
involving their attitudes and motivations in the learning process.
Given the differences in effects obtained in the present study con-
cerning GMA versus pre-training task-related knowledge, future
research should distinguish between the effects of general versus
more task-relevant individual differences in attitudes and motiva-
tions on exploratory behavior.

Conclusion

Research on the role of exploration in adult learning shows
promise for improving our understanding of active learning pro-
cesses and outcomes. By examining between- and within-person
effects, this study (a) illustrates the benefits of exploration in the
context of complex task learning, (b) calls into question a common
assumption that all trainees explore when given the opportunity,
and (c) addresses some criticisms of exploration in active learning
environments. In addition, the findings highlight the dynamic and
domain-specific nature of exploration as well as its importance as a
behavioral self-regulatory mechanism. We hope this study
prompts future research to include repeated behavioral measure-
ments of exploration to better identify the processes by which lear-
ner differences and instructional design elements facilitate
effective active learning for a wide range of learners.
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