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Editorial
New fundamental concepts, experimental methods and techniques have been growing recently about  the 
understanding of developmental social learning in humans and robots. They are at the crossroads of 
research in developmental robotics, human-robot interaction, and the psychology and neuroscience of 
human social learning. This newsletter features a stimulating dialog illustrating the high-importance of 
these concepts and techniques both for building machines capable of learning in interaction with non-
engineer humans across an extended time-scale, but also for better understanding human development. 
Together with an initiation and a synthesis by Katharina Rohlfing and Britta Wrede, the newsletter 
features contributions from Yukie Nagaï, Andrea Thomaz, Lakshmi Gogate, Adriana Tapus, Stevo 

Bozinoski, Anthony Morse, Thomas Hannagan, Rachel Wu, and Helge Ritter.

This month, a new dialog initiation by Denis Mareschal challenges existing computational models of development  by outlining 
three processes which he argues are fundamental in child development but mostly absent from models: 

• Epigenetic dynamics where gene expression is modified during ontogeny in interaction with the environment; 
• Body growth and the non-optimality of sensor fusion in infants; 
• The emotional mechanism associated with social learning, which control brain plasticity and help infants to select who to 

learn from.
Those of you interested in reacting to this dialog initiation are welcome to submit  a response (contact pierre-
yves.oudeyer@inria.fr) by September 1st, 2012. The length of each response must  be between 300 and 500 words (including 
references).

           — Pierre-Yves Oudeyer, INRIA, Editor

Welcome Message from the New Chair of AMD Technical Committee
Dear colleagues, it  is an honour, but  also a great responsibility, to have to follow on the steps of Minoru 
Asada and the previous chairs, and lead the AMD Technical Committee for 2012. To allow continuity with 
previous leadership, I have asked Matt Schlesinger to remain Deputy-Chair for the Americas region, and 
asked Yukie Nagai to stand in as Deputy Chair for the Asia region. And I would like to express my 
warmest thanks to Minoru Asada and Jochen Triesch for their invaluable work in the past two years.

This 2012 promises to be a very busy year for our community. Below are the main activities organised by 
AMD staff and planned for the coming months.

• ICIS 2012 Preconference Workshop on Developmental Robotics (6 June 2012), in Minnesota USA. This is organised in 
conjunction with ICIS-2012, the International Conference on Infant  Studies, and will provide a showcase of developmental 
robotics work to developmental psychologists. The workshop is organised by Matt Schlesinger and Jochen Triesch.

• Brain-Mind Institute’s Summer School (June-August 2012) and the ICBM, International Conference on Brain-Mind (14-15 
July 2012) in East Lansing, Michigan USA. These are the result of John Weng’s enthusiastic creation of the Brain-Mind 
Institute.

• WCCI-2012 Special Session on Bio-Inspired Developmental Mechanisms (10-15 June 2012), in Brisbane Australia.  
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• The most important event  for the AMD community this year will be the 2012 IEEE ICDL-EpiRob Conference, to be held in 
San Diego, California, on 7-9 November 2012. This is chaired by Javier Movellan, with the support of Matt Schlesinger and 
Jochen Triesch as co-general chairs. The deadline for papers submission is 15 June 2012. 

Here is an update on the IEEE AMD Technical Committee. My first aim as Chair has been to extend the membership of the AMD 
Technical Committee, and in particular to balance the geographical representation and reach of the AMD members. We have 
increased the AMD TC members from 65 to 94, and we are lucky now to have members from countries such as Australia, Brazil, 
Greece, India, Russia and Turkey. A full list  of members is available in the AMDTC website www.ieee-cis.org/technical/amdtc/. 
We now also have a mailing list ieee-amdtc@googlegroups.com    

The second aim of the AMD TC is to look at how we can best serve our community through the Task Forces. In the coming 
months we will be working on a full review of the TC sub-group organisation, e.g. to consider adding new Task Forces on Human-
Robot  Interaction, Neuroscience, Web presence, and the revising and regrouping of existing task forces. We need volunteers to 
lead and contribute to current and new Task Forces, so please feel free to offer your help.

And finally, remember to support our journal, the IEEE Transactions for Autonomous Mental Development, with the submission 
of your best  papers (no need to try first  Science and Nature ;-), and the reading (and citation!) of the work published in the journal. 
IEEE TAMD has now been selected for inclusion in the main impact factor and citation databases.  

I look forward to working with you all in the coming year. And I welcome and strongly encourage suggestions for new activities 
and initiatives for the AMD community at  large, as well as for the AMD Technical Committee. Feel free to drop an email with 
new ideas to acangelosi@plymouth.ac.uk.

 — Angelo Cangelosi, the new chair of AMD TC

Message from the Former Chair of AMD Technical Committee
I would like to thank all the continuous contributions by members of the AMD community to both the activities 
of our AMD TC and the growth of our scientific domain. I have finished my term as AMD TC chair for the 
years 2010 and 2011. During these two years, we had several major events which were highly successful. The 
biggest  one, in 2011, was the joint organization of ICDL and EpiRob conferences, in Frankfurt, Germany. I 
would like to thank the general chairs of the conference, Jochen Triesch (the former vice chair of AMD TC) and 
Angelo Cangelosi (the current chair of the AMD TC). This year, we will have the second one at UCSD, hosted 
by Javier Movellan, who will be general chair together with Matthew Schlesinger and Jochen Triesch. We will 
have the third one in Osaka, Japan, expecting it  as a symbol of the restoration from the quake, and Yukie Nagai 

shall work for it. Another important target  of our activities is the organization of workshops (and possibly an ICDL-Epirob 
conference in the future) co-located with developmental and neuroscience conferences. As the first step, Matthew Schlesinger (the 
former vice chair of AMD TC) is organizing ICIS (International Conference on Infant Study) 2012 Preconference Workshop on 
Developmental Robotics.

As mentioned, Angelo Cangelosi is the new chair of the AMD TC, and he has already started his work in order to further improve 
the quality and impact  of our activities, through for example an update of the task forces. He and his team are very active, 
promising, and expected to address challenges ahead, and I encourage volunteers to contribute and help him in this endeavour. 
Thanks again for your contributions to the past, current, and future activities of the AMD TC.

 — Minoru Asada, the former chair of AMD TC
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What Novel Scientific and Technological Questions Does Developmental Robotics Bring to HRI?
Are we Ready for a Loop?

Katharina J. Rohlfing & Britta Wrede
Center of Excellence Cognitive Interaction Technology (CITEC) Bielefeld University, Germany

The notion of embodied systems that enable multi-modal interaction and thus facilitate learning 
grounded in sensorimotor experience is a current overarching paradigm in robotics. However, 
we argue that  taking a developmental stance should take us beyond active but self-directed 
cognition [7]; developmental robotics should provide us with insights into the advantages of 
social learning. Thus, it  should be questioned how systems can take advantage of the input  and 

incremental interaction with the social and physical environment. Only then we will find new dimensions enabling learning 
processes on robots that  help to overcome current limitations of generalization. However, we suspect that our current methods – 
accessing children‘s development as well as designing learning systems – hinder us from asking the right questions.

In human developmental research, the view of active cognition [7] is supplemented by a view focusing on specifically designed 
input  and the fact  that  children‘s minds allow taking advantage of it. Research [2,10,17,23] persuasively shows that cognition is 
not only self-directed but  also distributed – over a system of people and objects within an environment ([17], p. 97). In this 
system, crucial learning information is ostensive [3] and reduced; we argue that robotic systems that are sensitive towards such 
input  benefit  from this specifically placed reduced information. We have implemented a first approach towards such a tutor spotter 
suggesting that it can induce tutoring behavior by users [13].

However, research on human infants has shown that effective learning requires more than just providing social input. The social 
information has to be flexible as it should be co-constructed online ([4]) and contingent  with the child‘s feedback (e.g. [14]). Our 
own research contributes to the argument that  it  is not  only the in- put but rather the interplay between the input  and the feedback 
of the participants that  enables the learner to take advantage of tutoring: in [15, 19], we showed that learners provide feedback in 
the form of e.g. their eye-gaze (signaling their attention or anticipating subsequent actions) which shapes the way input is provided 
(e.g.[18], [15]) and it is crucial for robotic systems to elicit  multimodal tutoring input  [6]. This, however, is only the first step 
towards understanding the power of interaction and how, within this exchange, the specifically tailored input influences what is 
learned.

Based on research results pointing to the loop, we question the capability of current robotics approaches to learn and generalize 
actions as well as language in embodied systems. Specifically we see shortcomings with respect to the following:

1. Current representations consider knowledge as a static entity, where incrementality is interpreted as adding new data 
points (e.g. [16]) or (sometimes) new classes (e.g. [9,1]). However, when we take more seriously the fact  that learning takes 
place in an interaction loop [15,20], we have to design representations that  are inherently dynamic and store knowledge not  as 
a binary but a dynamic state to which the environment and experiences contribute. First solutions for emerging hierarchical 
structures have been presented by e.g. Tani and colleagues [21] but in these approaches, structure emerges at  different  levels 
of a hierarchy with higher levels serving as sequencing concepts over lower level motor primitives rather than from vague to 
concrete. 

2. Learning systems support short-term memory. However, learning systems need to be equipped with long-term memory that 
facilitates knowledge assimilation and consolidation processes (cf. [8] for a memory-based language learning approach). 

3. Current  systems are restrictive with respect  to the pragmatic frame of interaction. For example, either the tutor‘s input or self-
exploration are the sources of learning. However, a learning system needs to be able to switch roles, thus becoming a tutor as 
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well as mixing different  sources of its learning in order to allow for self-reflexive processes consolidating accumulated 
knowledge further. 

4. Supervised learning algorithms are not able to take qualitative feedback of a tutor into account. However, we need to consider 
feedback that goes beyond binary reinforcement  signals but rather emphasizes specific parts of the learner‘s behavior, such as 
the manner in which an object is grasped or the goal where it has to be put. 

The complementary, methodical monopoly in developmental research let  the studies focus only on one side of the learning process 
(either the learner or the tutor) and falls short  of accessing the interplay between the tutor‘s behavior and the learner‘s feedback. 
Exceptions to the monopoly are studies that manage to encompass the loop in interaction in a systematic way ([11-12]) and thus 
provide a comprehensive view on children‘s learning. We think that  a bridge between qualitative and quantitative methods of 
analysis offers a solution to advance current  approaches: Qualitative methods like Conversational Analysis can aid us in 
identifying the means that  the participants use to signal feedback [19]; quantitative methods give us evidence about  the 
significance of different  types of feedback on the shape of the interaction loop [12]. Using multiple and new methods ([22]) will 
foster insights into how inter- and intra-personal coordination are related to each other [5] as the interaction unfolds and how it 
drives long-term learning processes.
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Mutual Shaping between Tutor’s Scaffolding and Robot’s Development
Yukie Nagai
Graduate School of Engineering, Osaka University, Japan

Rohlfing and Wrede point  out  throughout their dialog initiation that there is still a gap between robot  learning and 
social interaction: current  robots are not  endowed with the ability to take advantage of social learning and thus not 
yet ready for an interaction loop. Although many studies have investigated robot learning with human scaffolding 
(e.g., [1,3-5]), they have focused either on robot learners (e.g., how robots learn from tutors) or on human tutors 

(e.g., how tutors want to teach robots).

I agree that  a missing link is the interplay between a tutor’s input  and a robot’s feedback. A tutor should adapt  the complexity of 
input  so as to facilitate the robot’s learning (i.e., tutors’ scaffolding) while the robot should provide appropriate feedback to elicit 
proper scaffolding by the tutor (i.e., robots’ development). 

Toward modeling such mutual shaping between scaffolding and development, we recently started a close analysis of caregiver-
infant  interaction [2]. Inspired by [6], we have collected motion data of caregivers and infants during their dynamic interaction, 
and measured the information flow (i.e., how much a motion influences another motion) between and within a caregiver and an 
infant. For example, an infant’s development (e.g., improvement of body coordination) can be detected as an increase in the 
information flow within the infant.  A caregiver’s behavioral adaptation to an infant’s development can be detected as a change in 
his/her within-information flow (e.g., the higher the flow is, the more highly coordinated the caregiver’s motions are). 
Furthermore, social contingency can be measured as the information flow between a caregiver and an infant. Our latest results 
reveal the mechanism of mutual shaping between caregivers’ scaffolding and infants’ development, and show a further potential to 
uncover fine-grained social learning. 

As Rohlfing and Wrede mention, there are still several issues to address in order to enable robots to take advantage of social 
learning. The biggest  remaining challenge would be to integrate different aspects of social learning such as the design of learning 
systems and the coordination of interaction. I hope our interdisciplinary research in developmental robotics would break though 
the current limitations.
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Socially Guided Robot Learning
Andrea L. Thomaz
Georgia Institute of Technology, USA

While state of the art robot  learning technology is not  ready to participate in the kind of open-ended social 
learning interactions that children do, I think we are in a position to make important  first  steps in this direction.  
This is the goal of my own research in Socially Guided Machine Learning, which aims to computationally model 
mechanisms of human social learning to achieve robots that are intuitive for people to teach. 

Much of our work has focused on point  (4), that  supervised learning techniques are not  designed for input from naive humans. We 
often begin with an investigation into the feasibility of a particular machine learning interaction, which leads to a series of 
research questions around re-designing both the interaction and the algorithm to better suit  learning with end-users. The following 
are three examples:

Reinforcement Learning (RL)
A common approach for incorporating human input  into RL is reward shaping, letting the human directly control the reward signal 
to the agent [1,2]. We began with this type of interaction and iteratively designed new interfaces and algorithms, through 
experiments with humans, to support  the ways that  we observed people trying to teach.  For example, in addition to reward, people 
want to guide the agent's attention during learning as a lightweight  form of action advice. And if the agent  infers that  negative 
feedback implies an "undo" request, this leads to a 50% speedup in learning.

Robot Learning from Demonstration (LfD) 
Much of the field of LfD is motivated by the notion of robots learning from end-users. A survey of LfD [4] shows a range of 
different  input schemes with very different  interactions for the end-user (e.g., teleoperating, motion capture, or moving a robot 
kinesthetically to provide learning data). However, the field lacks an understanding of the usability of various input  mechanisms. 
Our aim is to create LfD techniques that end-users find natural and intuitive. We have focused on one popular input mode, 
kinesthetic teaching. Recently we have shown the benefits of allowing end users to demonstrate full trajectories versus sparse 
"keyframe" trajectories, finding each is useful for different  kinds of skills [5]. And since existing LfD algorithms are designed 
only for full trajectories, we have introduced a new framework for keyframe-based LfD [6].
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Active Learning for robots 
Active Learning (AL) is a machine learning paradigm in which the learner queries the supervisor, requesting particular learning 
input. Thus, an obvious candidate for social robot  learning. Our initial investigation compared an AL querying mechanism to a 
passive supervised learning method (with a human teacher as the supervisor). We find that active learning has the potential to 
greatly improve the interaction from a learning performance perspective, but  results suggest  it  may have an inappropriate balance 
of control [7]. One finding from this work was that people’s compliance to the robot’s queries was dependent on their believing it 
was a "good" question.  Thus, we have adapted three types of questions from the AL literature (feature, label, and demo queries) to 
make them appropriate for embodied interactive learning, and verified their utility with human partners [8].
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The Relative Novelty of Embodied Systems in Human and Human-Robot Interaction
Lakshmi J. Gogate
Florida Gulf Coast University, Fort Myers, USA.

Rohlfing and Wrede aptly take a developmental stance to consider an important set  of issues pertaining to 
learning within artificial and natural embodied systems.  Their main argument is that  embodied systems can 
inherently take advantage of the input  and incremental interaction with the social and physical environment.  
Thus, natural and artificial systems can benefit  from not just the input in isolation but  “the [reciprocal] interplay 
between the input  and the feedback of the participants [learners]”.  Also emphasized in their initiated dialog is 

that the learner can benefit from reduced input that is multisensory. A final issue underscored is that  incremental learning by the 
participant is possible with incremental increases in complexity of the input and incremental readiness of the participant  to receive 
this input.  

It  must be acknowledged, however, that  the main argument and several ensuing questions are not entirely novel: They have been 
extensively discussed in the developmental literature and have been empirically tested in developmental psychology and in 
developmental robotics research.  The present  dialogue therefore could benefit  greatly from further in-depth consideration of three 
related areas of research.  First, it  would be useful to consider the extant  developmental theory on embodied and extended 
cognition where intelligence is distributed across brain, body and environment [1, 2, 3, 4]. Second, let  us consider the empirical 
evidence from language development  research. These studies show that  the interplay between the tutor’s behavior and the 
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learner’s feedback, specifically infant’s gaze-switching behavior from mother  to object during her naming in temporal synchrony 
with shaking and looming object motions contributes to word learning [5, 6, 7, 8].  These studies combine observational and 
experimental techniques to further elucidate the interplay between tutor and learner. Gogate and Hollich [3] provide several other 
examples of this interplay between tutor and learner during language learning [e.g., 9, 10]. Finally, let  us consider some studies of 
human-robot  interaction which eloquently demonstrate the interplay between tutor and learner.  As a case in point, work by 
Kozima and colleagues shows that, children with autism benefit socially from contingent interactions with a robot  [11].  Similarly, 
work by Poulin-Dubois and colleagues illustrates that  typically developing infants can understand intentionality better from a 
robot “caregiver” if its labeling is contingent with its actions [12]. In addition, Nagai and Rohlfing have demonstrated that  a 
saliency-based attention model shows greater attention to a parent’s infant-directed talking face during real-time parent–infant 
interaction with objects than to the same parent’s face during parent–adult interaction [13]. 

References:

[1] Clark, A. (1997) Being there: Putting brain, body, and world together again. Cambridge, MA: MIT Press.
[2] Clark, A., & Chalmers, D. (1998) The extended mind. Analysis, 58, 7–19. 
[3] Gogate, L.J. & Hollich, G.J. (2010) Invariance detection within an interactive system: A perceptual gateway to language development. 
Psychological Review, 171(2), 496-516.
[4] Pfiefer, R., & Scheier, C. (1999) Understanding intelligence. Cambridge, MA: MIT Press.
[5] Gogate, L. J., Bolzani, L. H., & Betancourt, E. (2006) Attention to maternal multimodal naming by 6- to 8-month-old infants and learning 
of word-object relations. Infancy, 9, 259–288.
[6] Gogate, L. J. (2010) Learning of syllable-object relations by preverbal infants: The role of temporal synchrony and syllable distinctiveness. 
Journal of Experimental Child Psychology, 103, 178–197.
[7] Matatyaho, D., & Gogate, L. J. (2008) Type of maternal object motion during synchronous naming predicts preverbal infants’ learning of 
word-object relations. Infancy, 13, 172–184.
[8] Matatyaho, D., Mason, Z., & Gogate,  L. J. (2007) Word learning by 8-month-old infants: The role of object motion and synchrony. 
Proceedings of the 7th International Conference on Epigenetic Robotics: Lund University Cognitive Studies, 135, 201–202. 
[9] Cameron-Faulkner, T., Lieven, E., & Tomasello, M. (2003) A construction based analysis of child directed speech,  Cognitive Science, 27, 
843–873. 
[10] Adamson, L., & Bakeman, R. (2006) The development of displaced speech in early mother-child conversations. Child Development, 77, 
186–200.
[11] Kozima,  H., Nakagawa, C., & Yasuda, Y. (2005) Interactive robots for communication-care: A case-study in autism therapy. IEEE 
International Workshop on Robot and Human Interactive Communication, (ROMAN-2005), 341–346.
[12] Poulin-Dubois, D. (2006) Infants’  concept of mentalistic agent: Who can have intentions and goals? In S. Itakura, K. Hiraki, A. Arita, K. 
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Is Developmental Robotics a Solution for Socially Assistive Robotics?
Adriana Tapus
Cognitive Robotics Lab ENSTA-ParisTech, Paris, France

The Human-Robot Interaction (HRI) field for assistive applications focuses on how to provide long-term/lifelong 
social interaction for vulnerable populations (e.g., children with autism, post-stroke patients, and individuals 
suffering from cognitive impairments) [1]. Due to the sensitive nature of their interactions with humans, socially 
assistive robots need a thorough and targeted training, similar to that  received by nurses/trainers/therapists, before 

they are released into the wild. They also need to continuously and incrementally learn and adapt their behavior to the user’s 
profile (i.e., personality, preferences, and disability) and to the environmental changes in order to deliver a personalized, engaging, 
and motivating social interaction and useful feedback to their “users”.

Different perceptual modalities and cognitive and behavioral capabilities need to be explored so that a robot can develop through 
continuous interaction with, learning of, and adaptation in the social environment. The robot’s decisional abilities require taking 
into account context, user’s profile and disability level while performing its tasks [1]. It has to take initiative to establish and 
conduct  a fruitful therapeutical session with humans, and change its interaction styles depending on context  and scenarios [2,3]. 
The point raised by Rohlfing and Wrede regarding the necessity of a long-term memory to facilitate knowledge assimilation and 
consolidation is one that  I also share. I would go even further and argue that sharing learned concepts between robots, in a 
distributed fashion, and make some of that knowledge innate to the next  generation is extremely valuable. However, due to the 
sensitive nature of the tasks and interactions between socially assistive robots and the vulnerable users that  require their assistance, 
I believe that a traditional machine learning approach that allows for manual intervention in the learning process, as opposed to the 
“skull closed” approach advocated by the autonomous mental development community, is more appropriate.

The multimodal sensing capabilities that are required to move and act for long periods of time in continuously changing, human-
centered environments have highlighted the importance of the autonomous mental development of robots. Moreover, developing 
robots capable of expressing intentionality and spontaneity in social interaction is another problem, where the developmental 
process is more appropriate [4]. Nevertheless, in the assistive context, one difficulty encountered in lifelong learning robots is to 
measure what the robot has learned and its evolution in time. A qualitative and quantitative answer to this question could provide 
the possibility for the human to act on and to influence the robot decisional processes and vice versa.

Rohlfing and Wrede discuss also the importance of incorporating some high-level abstract  representation of tasks and object 
affordances in the system. This implies having or constructing some semantic representation and/or ontological schema. Most of 
the existing works in robotics have tried to learn the affordances [5] and very little have addressed the key problem of inferring 
affordance parameters from multimodal perceptual measurements [6]. This is of high importance and more research should be 
pursued in this direction.

To conclude this short  response, recent  works in socially assistive robotics show the importance of long-term interaction in having 
a personalized adaptive behavior based on the experience achieved and the interaction episodes [7,3]. In this context, 
developmental robotics, still in its infancy, can perhaps bring some new solutions to assistive robotics and therefore an 
interdisciplinary collaboration that creates the marriage between these two fields is required.
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Bring on The Loop
Anthony Morse, Cognition Institute, Centre for Robotics and Neural 
Systems, Plymouth University, UK

Thomas Hannagan, Laboratoire de Sciences Cognitives 
et Psycholinguistique, EHESS/CNRS/DEC-ENS, France

Rachel Wu, Centre for Brain and Cognitive Development, 
Birkbeck, University of London, UK

We concur with Rohlfing and Wrede in that  developmental robotics should both inform, and be informed by the fields of social 
and infant  cognition. Embodied cognition has, to date, focused on agent-environment interaction to the exclusion of social 
interactions, and so has missed this incredibly rich (and often simplifying) source of information. We would, however, like to 
make some qualifications to the picture of infant cognition described, and the questions raised. We do not  contest  the role of online 
social feedback and contingent interactions in infants learning (perhaps most  compellingly demonstrated when it  is lacking, 
altered, or misinterpreted, as in autism spectrum disorders). Recently however, a number of studies have shown that even by 8-9 
months of age the mere presence of social cues in videos (e.g., a friendly face happily addressing the infant) improves the 
likelihood of learning audio-visual events compared to non-social cues (e.g., flashing lights; [1]). These social cues fail to meet  the 
criteria set  by Rohlfing and Wrede: they are neither flexible, co-constructed online, nor contingent with the infants behavior. 
However, it is likely that they would depend on previous appropriate feedback experience. 

This newly emerging literature shows that beyond interactivity, social cues are useful for infants. This in turn points to different 
avenues of research for developmental robotics in addition to those outlined by Rohlfing and Wrede. For instance, new research 
questions can address how, why, and when social cues (e.g., eye gaze, motionese, infant-directed speech, imitation) can improve 
infants learning of both social and non-social targets (e.g. [2]). The authors also call for a cognitive system that  allows for 
dynamical representations, and long-term memory. These requirements are not novel in cognitive modeling, and in fact constitute 
some of the canons of the connectionist  framework, in which, an agents internal state is often described as a trajectory of activity 
patterns influenced by attractors in recurrent  networks. Long-term memory is supported by adaptations to the weights or 
connectivity of the network, which gradually evolve as the agents internal state interacts with various learning algorithms. Such 
connectionist  modelling has been applied successfully in recent developmental robotics projects with a social learning component, 
e.g. [3] endowed the iCub with a connectionist architecture to mirror and explain body-centered learning effects in infant/
caregiver interactions.
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A EEG Based Human-Robot Interaction: Implications for Developmental Robotics
Stevo Bozinovski 
Department of Mathematics and Computer Science, South Carolina State University, USA

As pointed out  by Rohlfing and Wrede ([6]) the current  methods of developmental robotics are mostly based on 
modeling children’s development  and designing various types of learning systems. They point  attention to 
Human Robot Interaction (HRI). They also point  out  that  it  is not  only the input  but rather the interplay between 
the input  and the feedback, as well as modality of the feedback (e.g. eye gaze), that enables the learner to take 
advantage in the learning process [5]. 

In this discussion we propose a possible direction in developmental robotics, the EEG based HRI. We describe a paradigm that 
involves learning, and on which we have been working for some time. 

The EEG based HRI started in 1988 when the first  control of a robot using EEG signal was reported [1], followed by the robot 
control using EOG signals [2]. Shortly after that taxonomy of brain potentials was proposed which explicitly introduces the class 
of anticipatory brain potentials [3], an experimental paradigm was carried out exploring learning and development  in the brain 
observed as a cognitive wave named Electroexpectogram (EXG). Recently the paradigm was used in controlling two robotic arms 
toward solving a three-disk Tower of Hanoi task [4]. 

The EXG is obtained in a paradigm named CNV flip-flop paradigm. It  is a feedback version of the classical Contingent Negative 
Variation (CNV) paradigm. The paradigm involves a naïve subject (learner) who was only told to press a button whenever the 
distinct S2 stimulus appears. The learner quickly realizes that there is an association between S1 and S2 and develops expectancy 
expect(S2/S1) which elicits a CNV potential. The CNV potential, which appears between the stimuli S1 and S2, has a distinctive 
ramp-shape. At  that point, the interaction partner (e.g. a robot), disables the S2 stimulus and performs some other action, for 
example moving its robotic arm. As experiment progresses, the human subject  realizes that there is no more association between 
S1 and S2, which lowers the expect(S2/S1) down to the point  where the observed event related potential has no CNV shape. Now 
the interaction partner turns on the stimulus S2 again (and optionally moves the robotic arm), and so on. The subject keeps 
adapting to the changing environment, which produces oscillation of expect(S2/S1). The oscillation of a CNV parameter (e.g. 
regression slope) is presented as the Electroexpectogram (EXG) curve.

When the experiment ends, the EXG is a record of mental development  of a human brain in respect  to the CNV flip-flop 
environment. And it  was stored in the robot “brain” interactively, during interplay with the human brain. The EXG provides a 
learned experience which can drive a sequence of future actions. So, the CNV flip-flop paradigm is a multimodal HRI paradigm in 
which a robot mental development is obtained in an interactive process with a human EEG.
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The Developmental Drive: From Designing Control Towards Enabling Interaction
Helge Ritter
Faculty of Technology & Excellence Cluster "Cognitive Interaction Technology" (CITEC)
Bielefeld University, Germany

A major temptation in robotics – driven by a desire to rapidly create useful applications – has been to "aim high" 
and focus on tasks that  are very different from what  we are concerned with during our early months or even 
years of life (since during that phase our primary goal is not exactly to be useful). 

The connection between developmental psychology and robotics has made us appreciate that  there is a rich fabric of sensorimotor 
and social skills acquired by a child in the first months of its life. This has begun to transform the field of robotics, triggering 
projects emphasising so far largely neglected aspects in robotics, such as the role of changing body morphologies [1,2], the 
availability of a sensitive skin surrounding the whole body [3] or developmental strategies for integrating multiple capabilities and 
skills [4]. 

The area where the benefits of a deeper understanding of developmental aspects for robotics already begins to become particularly 
clear is learning, giving us valuable clues how to organize suitable "scaffolds" or detect  "contingencies" [5] to guide low-level 
sensory learning towards the high-level learning that humans or higher animals exhibit even in very complex environments. 
Besides the important  social level, the body morphology as a major developmental scaffold is about  to trigger new research, such 
as focusing on the role of different body regions in the organization of mental growth and the development of cognition [3]. A 
major example focused in our own work is "manual intelligence" [6], the cluster of abilities developing around our use of hands. 

So we are definitely ready for the loop. What can we expect  from it? My hunch is that  developmental cognition research will drag 
us away from a style of algorithm development using handcrafted representations based primarily on nameable, symbolic entities 
and makes us ready for the challenge of creating interfaces and adaptation rules coping with the interactive shaping of dynamic 
processes with strong holistic and subsymbolic traits. This may give a new gist to our science, developing a body of knowledge 
how to reproducibly set up the right conditions for guiding processes of dynamic growth towards cognitive and skill development 
in artificial systems, without having to mess with the details themselves. And it may shift  our taste and attitude of understanding 
from a design of static control frameworks towards dynamic architectures for realizing adaptive, rich and ressource-sensitive 
cognitive interaction. 
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Reply and Summary:
A loop takes time

Katharina J. Rohlfing & Britta Wrede
Center of Excellence Cognitive Interaction Technology (CITEC) Bielefeld University, Germany

The discussion shows that two perspectives on social interaction need to be differentiated. From 
one perspective, and as pointed out by Lakshmi Gogate as well as Anthony Morse, Thomas 
Hannagan and Rachel Wu, social interaction constitutes a source of cues that can effectively 
guide attention. Its effects can be viewed as comparable to other sources that guide attention as 
well [10]. From the other perspective, however, in order to design interactions that  can take 

advantage of social cues, we need to understand how infants accumulate experiences from social interaction, i.e. which 
experiences they need, to later understand and appropriately take advantage of social cues. For this, it is necessary to consider the 
“history of social interaction” ([7], p. 192) — this is why we think that  a loop should not only involve the learner’s side but  also 
the history of the interaction between the social partners. We believe that  – incorporating insights from developmental studies – 
Developmental Robotics bring three important strings of research to the HRI:

Firstly, HRI research can assume that the attention of a learner can be guided ([19]) to the relevant aspects of an event, which can 
then be picked up. From current  studies, we gain lots of insights into the ways in which contextual information is important  in this 
attention guiding process; for example what is new in a particular situation ([14]) as well as on-line lexical competition among 
activated words and their meanings [22]. Yet we know little about  how these cues are embedded in social interaction. Some 
insights are provided by studies which – as Lakshmi Gogate is pointing out – are combining observational and experimental 
techniques. From these studies, we know for example that to link a label onto a referent, young learners need to be provided with 
synchronous movement ([8]) and that parents provide such scaffolding for younger but not  for older children [9]. However, these 
approaches can only tell us about  the fast  attribution of new word and object  as well as about  the strategies that  are necessary for a 
child to form this initial link. From recent research in word learning ([13]), however, we know that this link is fragile and needs to 
be strengthened by repeated exposure. Thus, the question is: What happens when a learning situation is repeated in order to 
facilitate long-term learning? Is it  simply sufficient  to initialize the same strategy (e.g. to provide the child with the label again and 
again while moving the object) or is it rather necessary to change the strategy and to fine-tune to the learner’s understanding? 
Current  research suggests that while in the first iteration, directing children’s attention to the referent  is crucial, in the second 
iteration, it might be advantageous to direct attention away from competitors [3].
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Secondly, we need to understand how infants’ attention becomes educated towards social and contextual cues. According to the 
Emergentist  Coalition Model ([10], [12]), it  seems that from a particular age on, children are more sensitive towards social cues 
than before [17]. Even though the authors explain this developmental change by pointing to the possibility that “infants come to 
recognize people as intentional beings who have goals” ([10], p. 32), together with Anthony Morse, Thomas Hannagan and Rachel 
Wu, we think that, again, the history of interaction is responsible for the effective presence of social cues in videos. Accordingly, 
the observation that  learning of audio-visual events improves when presented with social cues might highly depend on “previous 
appropriate feedback experience”. Our own research lets us suggest  that  sensitivity towards social cues does not  emerge over 
night. Even though the understanding of pointing can be attested to children around their first  birthday, we have shown that  in 4.5 
month-olds, a rudimentary understanding of pointing can be observed under specific conditions [18]. Thus, children are capable of 
understanding a referential gesture early in their development, when it is supported by a dynamic movement. 

These rudimentary capabilities are not  innate but  have to be acquired (e.g. [4]). Thus, we agree with Stevo Bozinovski claiming 
that it  is important  to create expectations about situational outcomes, and EEG research with young infants shows that  they create 
expectancy in the form of behavioral disposition before they produce this behavior [11]. Yet, we still know little about how such 
expectations are built. In the research by Flom and colleagues, for example, it is suggested that  “infants might learn to follow gaze 
or points to visually accessible locations because most triadic interactions in the first  year involve nearby, visible targets” (p. 192). 
For HRI, the unfolding expectation implies that  knowledge is not  binary coded but might  have different  forms varying from 
weakly activated to decontextualized. Thus, even though Adriana Tapus is suggesting to make artificial systems innately sensitive 
to social cues, we think that  in the ecology of learning, different  sensitivity to these cues might  evoke different forms of learning 
and knowledge — maybe necessary on the way to proficiency. Along these lines, research that Yukie Nagai is conducting promise 
to reveal more about how different  levels of body coordination of the learner shape the movement complexity of the tutor. Yet, we 
need to understand not only what the channels are, through which such information is flowing depending on the interlocutor’s 
abilities ([5]) but  also how these channels dynamically switch during an ongoing interaction to make it more efficient [21]. This is 
a feat  accomplished by Andrea Thomaz and colleagues in robot teaching ([1-2]). In this work, tutors switched between teaching 
holistic trajectories and (static) keyframes. This behavior makes it possible for the tutor to focus on relevant aspects of learning in 
reaction to the learner’s understanding. The authors are thus paving the way towards a much more flexible way of semantic-
oriented robot teaching which is also postulated by Ritter who sees the need to combine dynamic processes with holistic traits, in 
order to move away from handcrafted representations as they are currently used in robotics.

Thirdly, we can assume that social cues foster long-term learning. Taking, again, examples from word learning studies, Horst & 
Samuelson (2008) have shown that words are better retained when provided within an ostensive interaction. Similarly, the results 
in McGregor and colleagues (2009) suggest  that  words are learned better when a gesture is shown to the learner as opposed to a 
picture. Thus, referential gestures seem not only to have an impact on the online task solution but also on the retention and 
learning from the situation. However, we think that  ostensive cues can only be created when taking into account the history of 
interaction. Calling a child’s name is effective only when this prosodic pattern deviates from what the child heard right before. 
Thus, again, it  is not a particular behavior (i.e. calling somebody’s name) that  is ostensive per se, but  it is this signal put  into a 
particular communicative context that  creates an ostensive effect  making particular information relevant  [20]. We think that this 
idea can be pushed even further: A tutor can make a whole interaction relevant to the child by behaving contingently with the 
learner, as also suggested in the response by Yukie Nagai. We think that  in this way, pragmatic frames emerge that  “tell” the child 
in which spot important information can be found. Such a pragmatic frame can be observed when, for example, a new referent is 
labeled via pointing; the whole act of labeling consists then of eye contact, ostensive speech and the pointing gesture directed at 
the learner — all together forming a pattern, within which a child can rapidly pick up a word for a referent. How such patterns are 
established, is still not  well explained. Yet, design for human-robot interaction can benefit  from the identification of such patterns 
([6], [15]), enabling systems to perceive interaction more globally (as patterns) rather than being overloaded with parsing every 
single unit. Also, robot teaching scenarios could benefit  from the use of natural, possibly generalizing, cues instead of making use 
of programming commands to distinguish between different teaching styles (as e.g. in [2]).
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Overall, we not  only share the view of Ritter and Thomaz that  developmental robotics is a promising approach to build more 
flexible resource-sensitive robots, but  that  it is a unique research area which is very creative in developing new methods for 
analyzing HOW capabilities can incrementally emerge — in robots as well as in infants, to facilitate intuitive interaction.
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Dialog Initiation
Children’s Natural Learning: Why development really does matter!

Denis Mareschal
Centre for Brain and Cognitive Development
School of Psychology
Birkbeck College
University of London, London, UK. 

There have been many significant  advances in the field of developmental cognitive neurosciences over the last few years. These 
have important implications for the way learning in developing systems is to be considered. To date these factors are rarely 
directly considered in the existing (virtual or robotic) models of development. I will list  three of these and suggest  that they pose 
significant challenges for current computational and robotic models of learning in developing systems.

Epigenetics: When genes are turned on and off
One simple view of development is that it is the outcome of genetic “innate” constraints and environmental “experiential” 
constraints. Indeed, the field of Behavioural Genetics is largely concerned with trying to partition any observed variation in 
behaviour into a “genetic component” and an “environmental component” [8]. A more complex view is that these processes 
interact. So, for example, a constant genetic predisposition may have a greater or lesser impact on development depending on the 
agent’s environment [11]. In fact, the situation is far more complex. It  is now clear that gene expression itself can be self-
modulated depending on the environment ([4-5], [7]). For example, environmental changes such as an absence of food can lead to 
brain chemical imbalances in worker bees that alter the expression of genes, and consequently the physiological and functional 
roles of these bees in a hive. In other words… the effective genetic constraints are not  constant  and depend on environmental 
pressures. The extent  to which genetic material is expressed depends on the environmental needs of the agent.  This is not  only 
true in bees, but may play an important role in the expression of complex cognitive behaviors [3].

Morphogenesis: body growth does matter in early learning
The brain is particularly plastic during the early years [10]. This is not  just  so that  children can acquire new knowledge easily, but 
is also true because there is a need to constantly re-calibrate sensory information in a sensory-motor system that is dramatically 
changing in size and sensory efficacy. Indeed, while adults are able to combine sensory cues optimally to improve sensory 
estimates, children do not appear to do so until 8-12 years of age (e.g., [6]). This is because child’s changing physical dimensions 
(e.g., separation eye) continually distort the possible interpretation of sensory input. Body size also acts as an effective filter on the 
complexity of the environment  children learn from. For example, arm length helps support  what they are attending to because 
objects closer up will block larger portion of visual field [9].

Affect and Trust: Not all teachers are equal
It  is now well established that social interactions form an important  part of how children learn [12]. In particular, children can only 
acquire some knowledge (such as the existence of germs) through the testimony of others and not through direct experience. 
However, children do not learn equally from all social interactions. In fact, from the earliest  ages children identify those adults or 
peers in whose testimony they can trust [2]. This often leads to increased attachment  and affect for that person. At the neural level, 
increased positive affect  leads to the releases of dopamine throughout key parts of the brain that has the consequence of increasing 
plasticity in those parts of the brain [1]. Thus, positive affect  plays a role in modulating learning both at  the neural level and at  the 
(macro) social level.
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These three factors (among others) result in an effective learning environment  that  is highly adaptive to the current  needs of the 
learner. Importantly, it is a very different environment  for a developing agent than for the fully developed, adult  agent. 
Traditionally, computational modelers have tended to characterize learning systems in terms of the mechanisms and processes 
present in the adult.  My claim is that they also need to recognize the unique character of learning in a truly developmental system.

References:
[1] Dayan, P & Huys, Q. J. (2009) Serotonin in affective control. Annual Review of Neuroscience, 32, 95-126
[2] Harris,  P. L., Pasquin,  E.S., Duke, S., Asscher, J. & Pons, F. ( 2005) Germs and angels: The role of testimony in children’s ontology. 
Developmental Science, 9, 76-96.
[3] Kan,  K. J.,  Ploeger, A., Raijmakers,  M. E. J., Dolan, C.  V.,  & van der Maas, H. L. J. (2010). Nonlinear Epigenetic Variance: Review and 
Simulations. Developmental Science, 13(1), 11-27.
[4] Mareschal, D. Johnson,  M. H., Sirois, S., Spratling, M., Thomas, M. & Westermann, G. (2007) Neuroconstuctivism Vol. 1: How the brain 
constructs cognition. Oxford UK: OUP.
[5] Meaney, M. J.  (2010) Epigenetics and the Biological Definition of Gene × Environment Interactions. Child Development, 81, 41-79.
[6] Nardini,  M., Bedford, R. & Mareschal, D (2010). Fusion of visual cues is not mandatory in children. Proceedings of the National Academy 
of Science U. S. A. 107, 17041-17046
[7] Ronald, A. (2011). Is the Child father of the man? Evaluating the stability of genetic influences across development. Developmental 
Science, 14, 1471-8.
[8] Rutter, M. (2008) Genes and Behavior. Oxford, UK: Blackwell Publihsing
[9] Smith, L. B.,  Yu, C.,  & Pereira, A. F. (2011) Not your mother's view: the dynamics of toddler visual experience. Developmental Science, 14, 
9-17.
[10] Thomas,  M.S.C. and Johnson, M. H. (2006). The computational modelling of sensitive periods. Developmental Psychobiology, 48(4), 
337-344.
[11] Turkheime, E., Haley, A., Waldron, M, D’Onofrio, B. & Gottesman, I.  I. (2003) Socioeconomic status modifies heritability of IQ in Young 
Children. Psychological Science, 14, 623-628.
[12] Vygotsky ( 1976) Mind in Society. Harvard University Press.
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Call for paper and tutorials
IEEE International Conference on Development and Learning and 
Epigenetic Robotics (ICDL-EpiRob), 2012

Paper submission deadline: June 15, 2012
Tutorial submission deadline: June 15, 2012
Notification of acceptance: September 15, 2012
Conference: November 7-9, 2012

Location: San Diego, California, USA
Web: http://www.icdl-epirob.org/
General chairs: Javier Movellan (UCSD, US), Matthew Schlesinger 
(SIU Carbondale, US), 
Jochen Triesch (FIAS, Germany)
Program Chairs: Yukie Nagai (Osaka Univ. Japan), Ian Fasel (Univ. 
Arizona, US), Clay Morrison (Univ. Arizona, US)

The ICDL and the Epigenetic Robotics conferences are the premier venues for interdisciplinary research that blends the 
boundaries between robotics, artificial intelligence, machine learning, developmental psychology, and neuroscience. The scope of 
development  and learning covered by this conference includes perceptual, cognitive, motor, behavioral, emotional and other 
related capabilities that are exhibited by humans, higher animals, artificial systems and robots. 

Topics of interest include – but are not limited to:
• The science and engineering of learning.
• Machine learning and development.
• Sensory motor control.
• Computational approaches to the study of development and learning.
• Neural basis of development and learning.
• Language Acquisition.
• Neurogenesis.
• Datasets for the Analysis of Learning and Development.
• Field Studies.
• Biomimetic robots.
• Affect, Development and Learning.
• Intrinsic motivation, exploration and play
• Social development in humans and robots.
• Applications to education and clinical interventions.

In addition to article submissions, experts in different  areas are invited to organize a 3-hour tutorial, which will be held on the first 
day of the conference. Participants in tutorials are asked to register for the main conference as well. Tutorials are meant to provide 
insights into specific topics as well as overviews that will inform the interdisciplinary audience about the state-of-the-art  in child 
development, neuroscience, robotics, or any of the other disciplines represented at the conference.
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Call for Participation 
ICIS 2012 Developmental Robotics Workshop

Date: June 14, 2012, 1:00-6:00 PM
Location: Minneapolis, Minnesota, USA

Web: http://www.frontiersin.org/events/
ICIS_2012_Preconference_Workshop_on_Developmental_Robotics/1663

The purpose of this preconference workshop is to introduce behavioral researchers to the emerging 
field of developmental robotics. In particular, 8 invited speakers will provide an accessible 
overview of the robotic platforms, computational algorithms, and experimental methods used in 

developmental robotics. The workshop is part  of a long-term effort to establish and support collaborative research that bridges the 
study of learning and development across both natural and artificial systems. As a result, the International Conference on Infant 
Studies (i.e., ICIS, the largest organization for the study of human infants) was selected as the site for the workshop. 

The workshop is organized on behalf of the IEEE-CIS AMD Technical Committee by Matthew Schlesinger and Jochen Triesch.  
The panel of guest  speakers includes: Minoru Asada (Osaka University), Giorgio Metta (ITT, Italy), Anthony Morse (University of 
Plymouth), Javier Movellan (UC San Diego), Katharina Rohlfing (University of Bielefeld), Brian Scassellati (Yale University), 
Matthew Schlesinger (SIU Carbondale).

BMI Summer School
International Conference on Brain-Mind (ICBM)

BMI Summer School:  June 25 - August 3, 2012
International Conference on Brain-Mind: July 14 - July 15, 2012
Location: Michigan State University, East Lansing, Michigan, USA

Web: http://www.brain-mind-institute.org/

Collectively, the human race seems ready to unveil one of its last  mysteries - how its brain-mind works at  computational depth. 
The research community needs a large number of leaders who have sufficient  knowledge in at least six disciplines conjunctively -  
Biology, Neuroscience, Psychology, Computer Science, Electrical Engineering, and Mathematics (6 disciplines). The Brain-Mind 
Institute (BMI) provides an integrated 6-discipline academic and research infrastructure for future leaders of brain-mind research. 
The BMI is a new kind of institute, not limited by boundaries of disciplines, organizations, and geographic locations.

The subjects of interest for ICBM include, but not limited to:
Genes, Cells, Circuits, Diseases.
Streams: pathways, attention, vision, audition, touch, taste.
Brain ways: neural networks, brain-mind architecture, inter-modal, neural modulation. 
Experiences/learning: training, learning, development, interaction, intelligence metrics. 
Behaviors: actions, concept learning, abstraction, languages, decision, reasoning. 
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Societies/multi-agent: joint attention, swarm intelligence, group intelligence, laws. 
Applications: image analysis, computer vision, speech recognition, pattern recog.

The BMI summer courses 2012:
BMI 811 Biology for Brain-Mind Research, June 25 - July 13, 2012.
BMI 821 Neuroscience for Brain-Mind Research, July 16 - Aug.3, 2012.
BMI 871 Computational Brain-Mind (distance learning): Aug. 6 - Aug. 24, 2012

Keynote talks:
James L. McClelland, Stanford University 
Stephen Grossberg, Boston University 
Jim L. Olds, George Mason University

Call for paper: Third International Workshop on Human-Behavior 
Understanding  (HBU 2012) to be held in conjunction with IROS 2012

Paper submission deadline: July 1st, 2012
Notification of acceptance: July 25th, 2012
Workshop: October 7-12, 2012
Location: Vilamoura, Algarve, Portugal
Organizing committee: Albert Ali Salah (Bogazici Univ., Turkey), Javier 
Ruiz-del-Solar (Univ. Chile, Chile), Cetin Mericli (CMU, US), Pierre-Yves 
Oudeyer (Inria, France).

Web: http://www.cmpe.boun.edu.tr/hbu/2012/

The Third Workshop on Human Behavior Understanding, organized as a satellite to IROS'2012, will gather researchers dealing 
with the problem of computational modeling and understanding of human behavior under its multiple facets (expression of 
emotions, display of relational attitudes, performance of individual or joint  actions, imitation, etc.), with particular attention to 
implications in robotics, including additional resource and robustness constraints of robotic platforms, social aspects of human-
robot interaction, and developmental approaches to robotics.  

The HBU Workshops, previously organized as satellite to ICPR and AMI Conferences, have a unique aspect of fostering cross-
pollination of different disciplines, bringing together researchers of robotics, HCI, artificial intelligence, pattern recognition, 
interaction design, ambient  intelligence, psychology. The diversity of human behavior, the richness of multi-modal data that arises 
from its analysis, and the multitude of applications that demand rapid progress in this area ensure that the HBU Workshops 
provide a timely and relevant discussion and dissemination platform. 
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Volume 3, Issue 4, December 2011 
Link: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6097099&punumber=4563672

Guest Editorial: Special Issue on Computational Modeling of Neural and Brain Development
Jin, Y. N.; Meng, Y. M.; Weng, J. W.; Kasabov, N. K. (PDF)

From Infant Brains to Robots: A Report From the IEEE International Conference on  Development and Learning (ICDL)-
International Conference on Epigenetic Robotics (EpiRob) 2011 Conference
Cangelosi, A; Triesch, J. (PDF)

A Model of Neuronal Intrinsic Plasticity
Chunguang Li. Page(s): 277 - 284 (PDF)
Abstract: Recent experimental results have accumulated evidence that the neurons can change their response characteristics to 
adapt  to the variations of the synaptic inputs, which is the so-called neuronal intrinsic plasticity mechanism. In this paper, we 
present  a new model on neuronal intrinsic plasticity. We first  show that the probability distribution of the neuronal firing rates is 
more suitable to be represented as a Weibull distribution than an exponential distribution. Then, we derive the intrinsic plasticity 
model based on information theory. This study provides a more realistic model for further research on the effects of intrinsic 
plasticity on various brain functions and dynamics.

Firing Rate Homeostasis for Dynamic Neural Field Formation
Glaser, C.; Joublin, F. Page(s): 285 - 299 (PDF)
Abstract: Dynamic neural fields are recurrent neural networks which aim at modeling cortical activity evolution both in space 
and time. A self-organized formation of these fields has been rarely explored previously. The main reason for this is that learning-
induced changes in effective connectivity constitute a severe problem with respect to network stability. In this paper, we present a 
novel network model which is able to self-organize even in face of experience-driven changes in the synaptic strengths of all 
connections. Key to the model is the incorporation of homeostatic mechanisms which explicitly address network stability. These 
mechanisms regulate activity of individual neurons in a similar manner as cortical activity is controlled. Namely, our model 
implements the homeostatic principles of synaptic scaling and intrinsic plasticity. By using fully plastic within-field connections 
our model further decouples learning from topological constraints. For this reason, we propose to incorporate an additional 
process which facilitates the development of topology preserving mappings. This process minimizes the wiring length between 
neurons. We thoroughly evaluated the model using artificial data as well as continuous speech. Our results demonstrate that  the 
network is able to self-organize, maintains stable activity levels, and remains adaptive to variations in input strength and input 
distribution.

Probabilistic Computational Neurogenetic Modeling: From Cognitive Systems to Alzheimer's Disease
Kasabov, K.; Schliebs, R.; Kojima, H. Page(s): 300 - 311 (PDF)
Abstract: The paper proposes a novel research framework for building probabilistic computational neurogenetic models 
(pCNGM). The pCNGM is a multilevel modeling framework inspired by the multilevel information processes in the brain. The 
framework comprises a set  of several dynamic models, namely low (molecular) level models, a more abstract  dynamic model of a 
protein regulatory network (PRN) and a probabilistic spiking neural network model (pSNN), all linked together. Genes/proteins 
from the PRN control parameters of the pSNN and the spiking activity of the pSNN provides feedback to the PRN model. The 
overall spatio-temporal pattern of spiking activity of the pSNN is interpreted as the highest level state of the pCNGM. The paper 
demonstrates that this framework can be used for modeling both artificial cognitive systems and brain processes. In the former 
application, the pCNGM utilises parameters that correspond to sensory elements and neuromodulators. In the latter application a 
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pCNGM uses data obtained from relevant  genes/proteins to model their dynamic interaction that matches data related to brain 
development, higher-level brain function or disorder in different  scenarios. An exemplar case study on Alzheimer's Disease is 
presented. Future applications of pCNGM are discussed.

A Multiple Context Brain for Experiments With Robot Consciousness
Andreae, J.H. Page(s): 312 - 323 (PDF)
Abstract: The PURR-PUSS system (PP) is a versatile model of a human-like brain, designed to be implemented in parallel 
hardware and embodied in the head of a robot moving in the real world. The aim of the research with PP is to try out  mechanisms 
for learning, intelligence and consciousness. Limitations of resources have dictated that the experiments with PP are made on a 
personal computer by simulating the brain and robot body in a microworld. The unique features of PP are multiple context and 
novelty-seeking. In this paper, a squash-pop microworld is described first, so that concrete examples can be given for a brief 
review of the PP system, followed by two new features called trail memory, to realize Baars' global workspace, and belief 
memory, to realize Rosenthal's higher order thoughts and Johnson-Laird's conscious reasoning. The extended system, PP*, is 
designed to give consciousness to the subconscious PP, but  higher order thoughts and conscious reasoning prove to be elusive. A 
definition of a conscious robot provides a measure of progress.

Volume 4, Issue 1, March 2012 
Link: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6167349&punumber=4563672

Episodic-Like Memory for Cognitive Robots
Stachowicz, D.; Kruijff, G.M. Page(s): 1 - 16 (PDF)
Abstract: The article presents an approach to providing a cognitive robot  with a long-term memory of experiences-a memory, 
inspired by the concept of episodic memory (in humans) or episodic-like memory (in animals), respectively. The memory provides 
means to store experiences, integrate them into more abstract  constructs, and recall such content. The paper presents an analysis of 
key characteristics of natural episodic memory systems. Based on this analysis, conceptual and technical requirements for an 
episodic-like memory for cognitive robots are specified. The paper provides a formal design that  meets these requirements, and 
discusses its full implementation in a cognitive architecture for mobile robots. It  reports results of simulation experiments which 
show that the approach can run efficiently in robot applications involving several hours of experience.

A Model to Explain the Emergence of Imitation Development Based on Predictability Preference
Minato, T.; Thomas, D.; Yoshikawa, Y.; Ishiguro, H. Page(s): 17 - 28 (PDF)
Abstract: Imitation is a very complicated function which requires a body mapping (a mapping from observed body motions to 
motor commands) that can discriminate between self motions and those of others. The developmental mechanism of this 
sophisticated capability, and the order in which the required abilities arise, is poorly understood. In this paper, we present a 
mechanism for the development  of imitation through a simulation of infant-caregiver interaction. A model was created to acquire a 
body mapping, which is necessary for successful mutual imitation in infant-caregiver interaction, while discriminating self-motion 
from the motion of the other. The ability to predict  motions and the time delay between performing a motion and observing any 
correlated motion provides clues to assist  the development  of the body mapping. The simulation results show that the development 
of imitation capabilities depends on a predictability preference (a function of how an agent feels regarding its options of “what to 
imitate,” given its ability to predict motions). In addition, the simulated infants in our system are able to develop the components 
of a healthy body mapping in order, that is, relating self motion first, followed by an understanding of others' motions. This order 
of development emerges spontaneously without the need for any explicit  mechanism or any partitioning of the interaction. These 
results suggest that this predictability preference is an important factor in infant development.

Symbolic Models and Emergent Models: A Review
Juyang Weng. Page(s): 29 - 53 (PDF)
Abstract: There exists a large conceptual gap between symbolic models and emergent  models for the mind. Many emergent 
models work on low-level sensory data, while many symbolic models deal with high-level abstract (i.e., action) symbols. There 
has been relatively little study on intermediate representations, mainly because of a lack of knowledge about how representations 
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fully autonomously emerge inside the closed brain skull, using information from the exposed two ends (the sensory end and the 
motor end). As reviewed here, this situation is changing. A fundamental challenge for emergent models is abstraction, which 
symbolic models enjoy through human handcrafting. The term abstract refers to properties disassociated with any particular form. 
Emergent  abstraction seems possible, although the brain appears to never receive a computer symbol (e.g., ASCII code) or 
produce such a symbol. This paper reviews major agent  models with an emphasis on representation. It  suggests two different  ways 
to relate symbolic representations with emergent representations: One is based on their categorical definitions. The other considers 
that a symbolic representation corresponds to a brain's outside behaviors observed and handcrafted by other outside human 
observers; but an emergent representation is inside the brain.

A Behavior-Grounded Approach to Forming Object Categories: Separating Containers From Noncontainers
Griffith, S.; Sinapov, J.; Sukhoy, V.; Stoytchev, A. Page(s): 54 - 69 (PDF)
Abstract: This paper introduces a framework that allows a robot to form a single behavior-grounded object categorization after it 
uses multiple exploratory behaviors to interact  with objects and multiple sensory modalities to detect  the outcomes that each 
behavior produces. Our robot  observed acoustic and visual outcomes from six different exploratory behaviors performed on 20 
objects (containers and noncontainers). Its task was to learn 12 different object categorizations (one for each behavior-modality 
combination), and then to unify these categorizations into a single one. In the end, the object categorization acquired by the robot 
matched closely the object  labels provided by a human. In addition, the robot acquired a visual model of containers and 
noncontainers based on its unified categorization, which it used to label correctly 29 out of 30 novel objects.

Autonomous Learning of High-Level States and Actions in Continuous Environments
Mugan, J.; Kuipers, B. Page(s): 70 - 86 (PDF)
Abstract: How can an agent  bootstrap up from a low-level representation to autonomously learn high-level states and actions 
using only domain-general knowledge? In this paper, we assume that the learning agent has a set of continuous variables 
describing the environment. There exist methods for learning models of the environment, and there also exist  methods for 
planning. However, for autonomous learning, these methods have been used almost exclusively in discrete environments. We 
propose attacking the problem of learning high-level states and actions in continuous environments by using a qualitative 
representation to bridge the gap between continuous and discrete variable representations. In this approach, the agent begins with 
a broad discretization and initially can only tell if the value of each variable is increasing, decreasing, or remaining steady. The 
agent  then simultaneously learns a qualitative representation (discretization) and a set of predictive models of the environment. 
These models are converted into plans to perform actions. The agent  then uses those learned actions to explore the environment. 
The method is evaluated using a simulated robot with realistic physics. The robot is sitting at  a table that  contains a block and 
other distractor objects that are out of reach. The agent  autonomously explores the environment without being given a task. After 
learning, the agent  is given various tasks to determine if it learned the necessary states and actions to complete them. The results 
show that the agent was able to use this method to autonomously learn to perform the tasks.

A Goal-Directed Visual Perception System Using Object-Based Top–Down Attention
Yuanlong Yu; Mann, G.K.I.; Gosine, R.G. Page(s): 87 - 103 (PDF)
Abstract: The selective attention mechanism is employed by humans and primates to realize a truly intelligent perception system, 
which has the cognitive capability of learning and thinking about  how to perceive the environment autonomously. The attention 
mechanism involves the top-down and bottom-up ways that correspond to the goal-directed and automatic perceptual behaviors, 
respectively. Rather than considering the automatic perception, this paper presents an artificial system of the goal-directed visual 
perception by using the object-based top-down visual attention mechanism. This cognitive system can guide the perception to an 
object  of interest  according to the current task, context and learned knowledge. It consists of three successive stages: preattentive 
processing, top-down attentional selection and post-attentive perception. The preattentive processing stage divides the input scene 
into homogeneous proto-objects, one of which is then selected by the top-down attention and finally sent  to the post-attentive 
perception stage for high-level analysis. Experimental results of target  detection in the cluttered environments are shown to 
validate this system.
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